How to Choose a Column

Contents

Particle Technology	<u>85</u>
Ethylene Bridged Hybrid (BEH) Particle Technology	<u>85</u>
Charged Surface Hybrid (CSH) Particle Technology	<u>86</u>
High Strength Silica (HSS) Particle Technology	<u>86</u>
Solid-Core Particle Technology	<u>86</u>
Reversed Phase and HILIC Chemistries	<u>86</u>
Column Selection	
Column Selection USP "L" Column Listing	
USP "L" Column Listing	
USP "L" Column Listing Column Configurations for Any LC System Column Nomenclature	
USP "L" Column Listing	

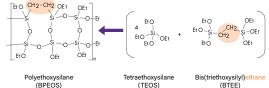
waters.com/order

How to Choose a Column

Separation scientists continue to search for innovative solutions to improve chromatographic performance. With a wide array of column choices and formats, they have the ability to select the ideal column for their application. The following section introduces Waters' particle technologies and column formats to help you choose the best column to deliver throughput, resolution, and efficiency for your next chromatographic challenge.

Particle Technology

Reproducibility and transferability are the cornerstones of Waters' BEH, CSH,[™] HSS, and solid-core particle technologies. Our extensive portfolio of scalable LC columns exhibit all of the chemical and physical characteristics you would expect from modern LC packing materials.



BEH Technology*	CSH Technology	HSS Technology	Solid-Core Technology
 High retentivity for basic compounds 	 Good separations for basic compounds under low 	 High retentivity for polar organic compounds 	 Maximum efficiency Increased sensitivity
 Exceptional peak shape at elevated pH 	pH conditions Excellent MS performance	and metabolites Balanced retention of polar and	Seamless scalability from
 Good universal column choice for a wide variety of compounds 	with formic acid as a mobile hydrophobic analytes	hydrophobic analytesHigh strength silica for mechanical stability	UPLC to UHPLC to HPLC
Stable across a wide pH range	column equilibration		
 For separations at high temperatures (80 °C) 			

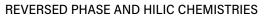
ETHYLENE BRIDGED HYBRID (BEH) PARTICLE TECHNOLOGY

Ethylene Bridged Hybrid (BEH) columns lead the industry for chromatographic versatility, chemical resistance, and mechanical stability. You can use them at extremes of pH and temperature to enhance retention and specificity for complex mixtures of acidic, basic, and neutral analytes. The BEH-particle family includes general-purpose and application-specific bonded phases that serve application areas.

*US Patents 6,686,035; 7,223,473; 7,250,214.

Refer to "Ethylene-Bridged (BEH Technology™) Hybrids and Their Use in Liquid Chromatography" whitepaper (p/n: <u>720001159EN</u>) for further detail.

CHARGED SURFACE HYBRID (CSH) PARTICLE TECHNOLOGY


Columns packed with charged surface hybrid (CSH) particles manifest the best attributes of BEH particles. CSH stationary phases provide chromatographic selectivity and superior performance in the presence of mobile phases of low ionic strength. The optimized surface charge, pore properties, and bonded phases make charged-surface, hybrid-based columns ideal for rapid method development.

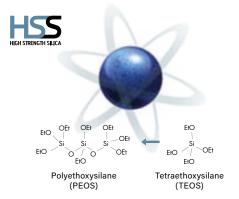
HIGH STRENGTH SILICA (HSS) PARTICLE TECHNOLOGY

High strength silica (HSS) technology was developed specifically to complement the chromatographic performance of BEH and CSH particles. Compared with the ethylene-bridged BEH and CSH particles, the HSS particle's higher silanophilicity (100% silica) offers chromatographers significant advantages, including increased retention of polar compounds and significantly different selectivity. Additionally, as its name implies, the HSS particle possesses the mechanical strength to operate at pressures as high as 18,000 psi (1240 bar).

SOLID-CORE PARTICLE TECHNOLOGY

Compared to columns packed with fully porous particles, columns packed with solid-core particles demonstrate higher chromatographic efficiency and lower backpressures. The optimized porous layer that surrounds the solid-silica core gives rise to the key benefits of speed and efficiency. UPLC columns packed with CORTECS[™] 1.6 µm particles yield maximum efficiency when used with the ultra-low dispersion ACQUITY UPLC instrument platform. CORTECS Columns packed with 2.7 µm particles offer maximum flexibility, providing increased efficiencies at the backpressure limits of UHPLC and HPLC operation.

To maximize selectivity, which is critical for analytical methods development, Waters offers a wide range of chemistries to help you separate the most challenging of compounds. For both reversed-phase and HILIC applicators, Waters has the chemistry you need to get the job done. Rugged and robust ligands that ensure long column lifetimes and reproducible separations over the lifetime of you method. Highlighted are some of Waters chemistries used for reversed-phase and HILIC separations.


The Charged-Surface Hybrid Particle

Surface Charge

Unbonded **BEH** Particle

Bond and End Cap

Solid-Core Particle The tightly controlled thickness of a highly dorous silica layer surrounding the inner solid core yie reconducible sidention and method robustness foir a wide range of sample conditions

Particle Diameter

Monodisperse particlé sizing provides highly permeable columns and, consequently, low backpressure

Bonding Technology

Partient with solid core particles, CORTECS Columns plement our family of particle technologies, offering unique ligand attributes that aid in method developme

Packing Efficiency

The increased efficiency of a solid-core particle produces more chromatographic resolution, which helps reduce the effort to separate co-eluting peaks.

~°, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\rightarrow	Full Coverage $C_{\tau s}$ – General purpose, balance non-polar retention for acids, bases, and neutrals
~°°	\rightarrow	Mid Covereage C_{18} – Balanced retention for polar and non-polar compounds (T3, C_{18}SB, and BEH C_{18}AX Bondings
-0-'Si ~~~~	\rightarrow	$\mathbf{C}_{_{1}}$ – For the retention of strongly hydrophobic compounds
CH, -0-Si-Taking	\rightarrow	Embedded Polar $\rm C_{18}$ – Different selectivity, with improved peak shape for basic compounds
	\rightarrow	Phenyl Hexyl – Different selectivity especially for aromatic compounds (ring structures)
	\rightarrow	Petafluorophenyl Propyl – Different selectivity especially for basic compounds
-o-s N	\rightarrow	Cyano - Different selectivity especially for polar molecules
-0-5	\rightarrow	Amide – Different selectivity for polar basic/ploar acid molecules
	→	Sulfobetataine – Increased HILIC retention with different selectivity for polar basic/polar acid molecules

86

Column Selection

Our quality mission is to ensure that the Waters' Columns you use today are the most reproducible and reliable LC columns available. As a primary manufacturer of silica and hybrid particles, scientists can be assured of consistent column performance, batch-to-batch reproducibility, and product availability over the life of the analytical method.

The following table lists all Waters Column Brands that are registered according to classifications prescribed in the United States Pharmacopeia (USP).

USP "L" COLUMN LISTING

Cctadecyl silane chemically bonded to porous or non-porous silica or ceramic micro-particles, 1.5 to 10 μm in diameter, or monolithic rod				
Brand		Particle Size	Туре	Page
AccQTa	g Ultra RP C ₁₈	1.7 µm	Spherical	<u>347</u>
ACQUIT	Y UPLC BEH C ₁₈	1.7 µm	Spherical	<u>118, 373</u>
ACQUIT BEH Shi	Y UPLC eld RP18	1.7 µm	Spherical	<u>118</u>
ACQUIT	Y UPLC CSH C ₁₈	1.7 µm	Spherical	<u>114</u>
ACQUIT	Y UPLC HSS C ₁₈	1.7 µm	Spherical	<u>121</u>
ACQUIT	Y UPLC HSS C ₁₈ SB	1.7 µm	Spherical	<u>121</u>
ACQUIT	Y UPLC HSS T3	1.7 µm	Spherical	<u>122</u>
ACQUIT Oligonu	Y UPLC cleotide C ₁₈	1.7 µm	Spherical	<u>377</u>
ACQUIT Peptide		1.7 µm	Spherical	<u>377</u>
ACQUIT	Y Premier BEH C ₁₈	1.7 µm	Spherical	<u>99</u>
ACQUIT	Y Premier HSS T3	187 µm	Spherical	<u>99</u>
ACQUIT Peptide	Y Premier BEH C ₁₈	1.7 µm	Spherical	<u>100</u>
•	Y Premier cleotide C ₁₈	1.7 µm	Spherical	<u>100</u>
ACQUIT	Y Premier Shield RP18	1.7 µm	Spherical	<u>99</u>
ACQUIT	Y Premier CSH C ₁₈	1.7 µm	Spherical	<u>99</u>
XBridge	Premier C ₁₈	2.5 µm	Spherical	<u>101</u>
XBridge	Premier Shield RP18	2.5 µm	Spherical	<u>101</u>
XBridge	Premier Peptide 130 Å	2.5 µm	Spherical	<u>377</u>
XBridge	Premier Peptide 300 Å	2.5 µm	Spherical	<u>377</u>
XBridge Oligonu	Premier cleotide C ₁₈	2.5 µm	Spherical	<u>377</u>
XSelect	Premier CSH C ₁₈	2.5 µm	Spherical	<u>101</u>
XSelect	Premier HSS T3	2.5 µm	Spherical	<u>102</u>
Atlantis	dC ₁₈	3, 5, 10 µm	Spherical	<u>209</u>
Atlantis	ТЗ	3, 5, 10 µm	Spherical	<u>208</u>
CORTEC	CS C ₁₈	2.7 µm	Spherical	<u>241</u>
CORTEC	CS C ₁₈ +	2.7 µm	Spherical	<u>241</u>
CORTEC	CS Shield RP18	2.7 µm	Spherical	<u>241</u>
CORTEC	CS T3	2.7 µm	Spherical	<u>241</u>
CORTEC	CS UPLC C ₁₈	1.6 µm	Spherical	<u>110</u>

Octadecyl silane chemically bonded to porous or non-porous silica or ceramic micro-particles, 1.5 to 10 µm in diameter, or a monolithic rod				
Brand		Particle Size	Туре	Page
CORTE	CS UPLC C ₁₈ +	1.6 µm	Spherical	<u>110</u>
CORTE	CS UPLC Shield RP18	1.6 µm	Spherical	<u>111</u>
CORTE	CS UPLC T3	1.6 µm	Spherical	<u>111</u>
Delta-P	ak C ₁₈	5 µm	Spherical	<u>301</u>
µBonda	pak C ₁₈	10 µm	Irregular	<u>300</u>
µBonda	pak C ₁₈ Radial-Pak	10 µm	Irregular	<u>307</u>
Nova-P	ak C ₁₈	4, 6 µm	Spherical	<u>299</u>
Prep No	va-Pak HR C ₁₈	6 µm	Spherical	<u>308</u>
Radial-F	Pak C ₁₈	Spherical	Spherical	<u>307</u>
Resolve	C ₁₈	5, 10 µm	Spherical	<u>244, 307</u>
Spheris	orb ODS1	3, 5, 10 µm	Spherical	<u>295</u>
Spheris	orb ODS2	3, 5, 10 µm	Spherical	<u>295</u>
Spheris	orb ODS-B	5 µm	Spherical	228
SunFire	C ₁₈	2.5, 3.5, 5, 10 μm	Spherical	<u>172, 277</u>
Symme	try C ₁₈	3.5, 5 µm	Spherical	<u>291</u>
Symme	tryPrep C ₁₈	5, 7 µm	Spherical	<u>217, 292</u>
Symme	try 300 C ₁₈	3.5, 5 µm	Spherical	<u>293</u>
Symme	tryShield RP18	3.5, 5 µm	Spherical	<u>292, 293</u>
XBridge	C ₁₈	2.5, 3.5, 5, 10 μm	Spherical	<u>255</u>
XBridge	Peptide BEH, 130 Å	3.5, 5, 10 µm	Spherical	<u>260</u>
XBridge	Peptide BEH, 300 Å	3.5, 5, 10 µm	Spherical	<u>261</u>
XBridge	BEH C ₁₈	2.5, 3.5, 5, 10 μm	Spherical	<u>254</u>
XBridge	Oligonucleotide C ₁₈	2.5 µm	Spherical	<u>262</u>
XBridge	Shield RP18	2.5, 3.5, 5, 10 μm	Spherical	<u>256</u>
XSelect	CSH C ₁₈	2.5, 3.5, 5 µm	Spherical	<u>267</u>
XSelect	HSS C ₁₈	2.5, 3.5, 5 µm	Spherical	<u>270</u>
XSelect	HSS C ₁₈ SB	2.5, 3.5, 5 µm	Spherical	<u>270</u>
XSelect	HSS T3	2.5, 3.5, 5 µm	Spherical	<u>271</u>
XTerra N	/IS C ₁₈	2.5, 3.5, 5, 10 μm	Spherical	<u>286</u>
XTerra F	RP18	3.5, 5, 10 µm	Spherical	<u>288, 289</u>

() - Denotes particle sizes available outside of L class.

Source: United States Pharmacopeia.

L2	Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core, 30 to 50 µm in diameter				
Brand		Particle Size	Туре	Page	
Bondapa	ak Prep C ₁₈	15–20 µm	Irregular	236	

L3 Porous silica particles monolithic silica rod	, 1.5 to 10 μm in	diameter, o	ra
Brand	Particle Size	Туре	Page
ACQUITY UPLC BEH HILIC	1.7 µm	Spherical	<u>118,119</u>
Atlantis HILIC Silica	3, 5 µm	Spherical	<u>284</u>
CORTECS HILIC	2.7 µm	Spherical	<u>134</u>
CORTECS UPLC HILIC	1.6 µm	Spherical	<u>112</u>
μPorasil	10 µm	Spherical	<u>237, 244</u>
Nova-Pak Silica	4, 6 µm	Spherical	<u>299</u>
Prep Nova-Pak HR Silica	6 µm	Spherical	<u>308</u>
Resolve Silica	5, 10 µm	Spherical	<u>244, 307</u>
Spherisorb Silica	3, 5, 10 µm	Spherical	<u>230, 295</u>
SunFire Silica	5, 10 µm	Spherical	<u>172, 279</u>
XBridge BEH HILIC	2.5, 3.5, 5, 10 μm	Spherical	<u>265</u>

L4	Silica gel controlled surface porosity bonded to a solid spherical core, 30 to 50 µm in diameter				
Brand		Particle Size	Туре	Page	
Porasil F	Prep Silica	15–20 µm	Spherical	<u>303</u>	

L7 po	tylsilane chemically rous silica particles poolithic silica rod			
Brand		Particle Size	Туре	Page
ACQUITY U	PLC BEH C ₈	1.7 µm	Spherical	<u>118</u>
CORTECS C	8	2.7 µm	Spherical	<u>123</u>
CORTECS U	IPLC C ₈	1.6 µm	Spherical	<u>111</u>
CORTECS P	henyl	2.7 µm	Spherical	<u>112</u>
CORTECS U	IPLC Phenyl	1.6 µm	Spherical	<u>124</u>
Nova-Pak C	в	4, 6 µm	Spherical	<u>299</u>
Resolve C ₈		10 µm	Spherical	<u>307</u>
Spherisorb (C ₈	3, 5, 10 µm	Spherical	<u>229, 296</u>
SunFire C ₈ S	ilica	3.5, 5, 10 µm	Spherical	<u>173, 280</u>
Symmetry C	8	3.5, 5, 7 µm	Spherical	<u>292</u>
SymmetryPr	rep C ₈	7 µm	Spherical	<u>213</u>
SymmetrySl	nield RP8	3.5, 5 µm	Spherical	<u>293</u>
XBridge BEH	Η C ₈	2.5 3.5, 5, 10 μm	Spherical	<u>102, 185</u>
XTerra MS C	8	2.5 3.5, 5, 10 μm	Spherical	<u>223, 287</u>
XTerra Shiel	d RP8	3.5, 5, 10 µm	Spherical	<u>225, 289</u>

L8 An essentially monomolecular layer of aminopropylsilane chemically bonded to totally porous silica gel support, 1.5 to 10 μm in diameter, or a monolithic silica rod

Brand	Particle Size	Туре	Page
High Performance Carbohydrate Analysis	3, 5 µm	_	<u>495</u>
$\mu Bondapak NH_2$	10 µm	Irregular	<u>236</u>
Spherisorb NH ₂	3, 5, 10 µm	Spherical	<u>229, 297</u>

L9	Irregular or spherical, totally porous silica gel having a chemically bonded, strongly acidic cation-exchange coating, 3 to 10 μm in diameter				
Brand		Particle Size	Туре	Page	
Spherise	orb SCX	5, 10 µm	Spherical	<u>231, 298</u>	

L10 Nitrile groups chemically boned to porous silica particles, 1.5 to 10 μm in diameter, or a monolithic silica rod

Silicatou			
Brand	Particle Size	Туре	Page
ACQUITY UPLC HSS CN	1.7 µm	Spherical	<u>122</u>
µBondapak CN	10 µm	Irregular	<u>236</u> , <u>300</u>
NovaPak CN HP	4 µm	Spherical	<u>299</u>
Resolve CN	10 µm	Spherical	<u>307</u>
Spherisorb CN	3, 5, 10 µm	Spherical	<u>230, 297</u>
Spherisorb CN RP	3, 5, 10 µm	Spherical	<u>230, 298</u>
XSelect HSS CN	2.5, 3.5, 5 µm	Spherical	<u>206</u>

Phenyl groups chemically bonded to porous silica particles, 1.5 to 10 μm in diameter, or a monolithic silica rod

silica rod			
Brand	Particle Size	Туре	Page
ACQUITY UPLC BEH Phenyl	1.7 µm	Spherical	<u>119</u>
ACQUITY UPLC CSH Phenyl-Hexyl	1.7 µm	Spherical	<u>114</u>
ACQUITY Premier CSH Phenyl-Hexyl	1.7 µm	Spherical	<u>99</u>
XSelect Premier CSH Phenyl-Hexyl	1.7 µm	Spherical	<u>102</u>
CORTECS Phenyl	2.7 µm	Spherical	<u>136</u>
CORTECS UPLC Phenyl	1.6 µm	Spherical	<u>112</u>
µBondapak Phenyl	10 µm	Irregular	<u>236</u>
NovaPak Phenyl	4 µm	Spherical	<u>233</u>
Spherisorb Phenyl	3, 5, 10 µm	Spherical	<u>230</u>
XBridge BEH Phenyl	2.5, 3.5, 5 µm	Spherical	<u>147</u>
XSelect CSH Phenyl-Hexyl	2.5, 3.5, 5 µm	Spherical	<u>158</u>
XTerra Phenyl	3.5, 5 µm	Spherical	<u>177</u>

A strong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core, 30 to 50 µm in diameter Brand Particle Size Type Page

Brand	Particle Size	Туре	Page
AccellPlus QMA	40 µm	Irregular	<u>450</u>

() - Denotes particle sizes available outside of L class.

Source: United States Pharmacopeia.

L13	3 Trimethylsilane chemically bonded to porous silica particles, 3 to 10 μm in diameter			
Brand		Particle Size	Туре	Page
Spheris	orb C ₁	3, 5, 10 µm	Spherical	<u>229</u> , <u>296</u>

L14	Silica gel having a chemically bonded strongly basic quaternary ammonium anion-exchange coating, 5 to 10 µm in diameter			
Brand		Particle Size	Туре	Page
Spherise	orb SAX	5, 10 µm	Spherical	<u>231, 298</u>

L15	– Hexylsilane chemically bonded to totally porous silica particles, 3 to 10 μm in diameter			
Brand		Particle Size	Туре	Page
Spherise	orb C ₆	3, 5, 10 µm	Spherical	<u>229, 296</u>

L17 Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the hydrogen form, 6 to 12 µm in diameter				
Brand		Particle Size	Туре	Page
Fast Fruit Juice N/A 497				<u>497</u>
IC-Pak	Cation	10 µm	Irregular	<u>500</u>
IC-Pak Ion Exclusion 7 μm Spherical <u>497</u>				<u>497</u>
Shodex	RSpak DC-613	6 µm	Spherical	<u>237</u>

L19 Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the calcium form, 5 to 15 μm in diameter

Particle Size	Туре	Page
7 µm	Spherical	<u>496</u>
9 µm	Spherical	<u>496</u>
	7 µm	

20 Dihydroxypropane groups chemically bonded to porous silica or hybrid particles, 1.5 to 10 μm in diameter, or a monolithic silica rod

monontine since rou			
Brand	Particle Size	Туре	Page
ACQUITY BEH200SEC	1.7 µm	Spherical	<u>119</u>
BioSuite 125, 250, 450 series	4, 5, 8, 10, (13), (17) µm	Spherical	<u>433</u>
Insulin HMWP	-	N/A	<u>429</u>
Protein-Pak 60	10 µm	Spherical	<u>433</u>
Protein-Pak 125	10 µm	Spherical	<u>433</u>
Protein-Pak 200SW and 300SW	10 µm	Spherical	<u>433</u>
XBridge Protein BEH SEC, 125 Å	3.5 µm	Spherical	<u>466</u>
XBridge Protein BEH SEC, 200 Å	3.5 µm	Spherical	<u>466</u>
XBridge Protein BEH SEC, 450 Å	3.5 µm	Spherical	<u>466</u>

() - Denotes particle sizes available outside of L class.

Source: United States Pharmacopeia.

$L21 \qquad \begin{array}{l} \mbox{A rigid, spherical styrene-divinylbenzene copolymer,} \\ \mbox{3 to 30 } \mbox{\mu m in diameter} \end{array}$

Brand	Particle Size	Туре	Page
Styragel HR 0.5, 1, 2, 3 and 4	-	Spherical	<u>406</u>
Styragel HR 4E	-	Spherical	<u>406</u>
Styragel HR 5E	-	Spherical	<u>406</u>

A cation-exchange resin made of porous polystyrene gel with sulfonic acid groups, 5 to 15 µm in diameter

with suffering dela groups, 5 to 10 µm m dameter			
Brand	Particle Size	Туре	Page
IC-Pak Ion Exclusion	7 µm	Spherical	<u>500</u>
Shodex RSpak DC-613	6 µm	Spherical	<u>237</u>
Shodex Sugar SP0810	8 µm	Spherical	<u>496</u>

L23	An anion-exchange resin made of porous polymethacrylate or polyacrylate gel with quaternary ammonium groups, 7 to 12 μm in size

Brand	Particle Size	Туре	Page
BioSuite DEAE	(2.5), 10, 13 µm	Spherical	<u>446</u>
BioSuite Q AXC	10, 13 µm	Spherical	<u>446</u>
BioSuite Q-PEEK	10 µm	Spherical	<u>446</u>
IC-Pak Anion	10 µm	Spherical	<u>500</u>
IC-Pak A HC	10 µm	Spherical	<u>500</u>
Protein-Pak Q 8HR	8 µm	Spherical	<u>447</u>

L25	Packing having the capacity to separate compounds with a molecular weight range from 100–5000 (as determined by polyethylene oxide), applied to neutral, anionic, and cationic water-soluble polymers. A polymethacrylate resin base, cross-linked with polyhydroxylated ether (surface contained some residual carboxyl functional groups) was found suitable			
Brand		Particle Size	Туре	Page
Ultrahydrogel DP, +120 10 μm Spherical <u>47</u>			473	

Butyl silane chemically bonded to totally porous or superficially porous silica particles, 1.5 to 10 μm

in diameter			
Brand	Particle Size	Туре	Page
ACQUITY UPLC BEH300 $\rm C_4$	1.7 µm	Spherical	<u>416</u>
Delta-Pak C ₄	5 µm	Spherical	<u>234</u>
Symmetry300 C ₄	3.5, 5 µm	Spherical	<u>241, 242</u>
XBridge BEH300 C ₄	3.5, 5, 10 µm	Spherical	<u>241</u>

L27	Porous silica particles, 30 to 50 µm in diameter		
Brand	Particle Size Type	Page	
Porasil	37–55 μm Spheric	al <u>303</u> , <u>307</u>	

Packing having the capacity to separate dextrans by molecular size over a range of 4000 to 500,000 Da. It is spherical, silica-based, and processed to provide pH stability

_33

Brand	Particle Size	Туре	Page
ACQUITY UPLC Protein BEH SEC, 125 Å	1.7 µm	Spherical	<u>427</u>

L34	Strong cation-excha cross-linked styrend lead form, 7 to 9 µm	e-divinylbenzene		
Brand		Particle Size	Туре	Page
Shodex Sugar SP-0810 N/A Spherical 496		<u>496</u>		

L37 Packing having the capacity to separate proteins by molecular size over a range of 2000 to 40,000 Da. It is a polymethacrylate gel			by	
Brand		Particle Size	Туре	Page
Ultrahydrogel 250		N/A	Spherical	<u>473</u>

L38	A methacrylate-based size-exclusion packing for water- soluble samples			
Brand		Particle Size	Туре	Page
Ultrahydrogel series		N/A	Spherical	<u>473</u>

L39 A hydrophilic polyhydroxymethacrylate gel of totally porous spherical resin				
Brand		Particle Size	Туре	Page
Ultrahydrogel series N/A Spherical <u>473</u>			<u>473</u>	

L43	Pentafluorophenyl groups chemically bonded to silica particles by a propyl spacer, 1.5 to 10 µm in diameter			
Brand		Particle Size	Туре	Page
ACQUIT Fluoro-F	Y UPLC CSH Phenyl	1.7 µm	Spherical	<u>114</u>
ACQUIT	Y UPLC HSS PFP	1.8 µm	Spherical	<u>122</u>
XSelect	CSH Fluoro-Phenyl	2.5, 3.5, 5 µm	Spherical	<u>157, 160,</u> 1 <u>61</u>
XSelect	HSS PFP	2.5, 3.5, 5 µm	Spherical	<u>165, 167</u>

L52	A strong cation exchange resin made of porous silica with sulfopropyl or sulfoethyl groups, 1 to 10 μm in diameter			
Brand		Particle Size	Туре	Page
IC-Pak Cation 10 μm Irregular 500				

L55	A strong cation exchange resin made of porous silica coated with polybutadiene-maleic acid copolymer, about 5 μm in diameter			
Brand		Particle Size	Туре	Page
IC-Pak C M/D N/A N/A 50		<u>500</u>		

L59 Packing for the size-exclusion separations of proteins (separation by molecular weight) over the range of 5 to 7000 kDa. The packing is spherical 1.5 to 10 μm, silica or hybrid packing with a hydrophilic coating

Brand	Particle Size	Туре	Page
ACQUITY BEH200 SEC	1.7 µm	Spherical	<u>119</u>
BioSuite 125, 250, 450 series	4–17 µm	Spherical	<u>433</u>
Protein-Pak 60	10 µm	Spherical	<u>433, 471</u>
Protein-Pak 300SW	10 µm	Spherical	<u>433, 471</u>

Spherical, porous silica, 10 µm or less in diameter, the surface of which has been covalently modified with alkyl amide groups and not endcapped

3 • • • • • • • • • • • • • • • • • • •			
Brand	Particle Size	Туре	Page
ACQUITY UPLC Glycan BEH Amide	1.7 µm	Spherical	<u>119</u>
ACQUITY UPLC BEH Amide	1.7 µm	Spherical	<u>118</u>
ACQUITY Premier Glycan BEH Amide	1.7 µm	Spherical	<u>369</u>
ACQUITY Premier BEH Amide	1.7 µm	Spherical	<u>383</u>
XBridge Premier Glycan BEH Amide	2.5 µm	Spherical	<u>338</u>
XBridge BEH Amide	2.5, 3.5, 5 µm	Spherical	<u>338</u>
XBridge Premier BEH Amide	2.5 µm	Spherical	<u>101</u>
XBridge BEH Amide Glycan	2.5, 3.5 µm	Spherical	<u>370</u>

L78	A silane ligand that co (an alkyl chain longer (primary, secondary, to groups) functional gro or non-porous silica o µm in diameter, or a m	than C ₈) and an ertiary, or quarte oups chemically or ceramic micro	ion-exchang enary amino bonded to p	e orous	
Brand Particle Size Type Page					
Atlantis Premier BEH C ₁₈ AX 1.7, 2.5, 5 µm Spherical 104					

L122	Sulfobetaine graft-polymerized to totally or superficially porous hydrophilic polymer particles, 1.0 to 10 µm in diameter, or a monolithic rod. Packing having densely bonded zwitterionic groups with 1:1 charge balance				
Brand Particle Size Type Pag					
Atlantis Premier BEH Z-HILIC 1.7, 2.5, 5 µm Spherical				<u>104</u>	

() - Denotes particle sizes available outside of L class.

Source: United States Pharmacopeia.

Column Configurations for Any LC System

COLUMN NOMENCLATURE

Our fully scalable particle technologies ensure that our LC columns perform with a broad range of chromatographic instrumentation. Depending on the goals of a separation, the instrument platform used, or the sample type, you can choose the most suitable column that is matched to your system's configuration without adversely affecting the chromatographic result.

The following table serves as a guide for selecting an appropriate LC column according to instrument classification.

Nano/Micro	UPLC	UHPLC	HPLC	Preparative	
ACQUITY UPLC M-CLASS BEH	ACQUITY UPLC BEH	XBridge BEH XP	XBridge BEH	XBridge BEH OBD™	
(1.7 μm)	(1.7 μm)	(2.5 µm)	(3.5, 5 µm)	(5, 10 µm)	
ACQUITY UPLC M-CLASS CSH	ACQUITY UPLC CSH	XSelect CSH XP	XSelect CSH XP	XSelect CSH OBD	
(1.7 µm)	(1.7 μm)	(2.5 μm)	(3.5, 5 μm)	(5, 10 μm)	
ACQUITY UPLC M-CLASS HSS	ACQUITY UPLC HSS	XSelect HSS XP	XSelect HSS XP	XSelect HSS OBD	
(1.8 µm)	(1.8 μm)	(2.5 μm)	(3.5, 5 μm)	(5 µm)	
_	CORTECS UPLC (1.6 µm)	CORTECS (2.7 µm)	-	_	

COLUMN CONFIGURATION

System dispersion is inherent in every chromatographic system. It is the instrument's contribution to chromatographic band broadening and is dependent on the system's tubing volume, valve fittings, column fittings, and flow cell volume. System dispersion, in combination with column dispersion, makes up the total dispersion of a given separation. Therefore, it is important to understand the system's impact on chromatographic band broadening when choosing your column configuration. Systems that have high dispersion values will obtain the best column performance using columns that have larger volumes; and, systems that have low dispersion values are able to obtain excellent column performance using columns that have smaller volumes.

The following table summarizes the characteristics of Waters LC Systems and matches the column configuration that maintains chromatographic efficiency.

System	Nano/Micro	UPLC	UHPLC	HPLC	Preparative
Dispersion	1µL	<20 µL	22–29 µL	>30 µL	_
Routine Pressure	<15,000 psi	<18,000 psi	<10,000 psi	<10,000 psi	<4000 psi
Particle Size	<2 µm	<2 µm	2-3 µm	3–5 µm	>5 µm
Column I.D.	75–300 µm	2.1 mm (1.0 mm)	3.0 mm (2.1 mm)	4.6 mm (3.0 mm)	>7.8 mm
Column Length	50-250 mm	<150 mm	50–150 mm	75-300 mm	50-300 mm

When you transfer LC methods, instrument dispersion is one of the most practical LC-instrument parameters to determine. Knowing the bandspread value helps you develop your own compatible methods, allowing you to seamlessly scale column dimensions or transfer methods between different instrumentation platforms and laboratory functions. The following table recommends column configurations based on nominal instrument bandspread values.

System	Bandspread*	Recommended Column Particle Sizes and I.D.s	System	Bandspread*	Recommended Column Particle Sizes and I.D.s
Shimadzu Prominence UFLC	41 µL	CORTECS 2.7 µm	ACQUITY UPLC	12 µL	ACQUITY UPLC BEH 1.7 μm
Alliance 2695 HPLC	29 µL	WBridge 3.5, 5 μm	ACQUITY UPLC H-Class with Column Manager	12 µL	ACQUITY UPLC CSH
Agilent 1260 UHPLC (600 bar)	28 µL	3.0-4.6 mm l.D.			ACQUITY UPLC HSS 1.8 µm
ACQUITY Arc Thermo Accela UHPLC Agilent 1290 UHPLC (1200 bar)	23 μL 21 μL	🔘 XBridge 2.5, 3.5, 5 μm	ACQUITY UPLC H-Class	9 µL	CORTECS UPLC 1.6 µm
		🛑 XSelect 2.5, 3.5, 5 μm			2.1 mm l.D.
		CORTECS 2.7 µm	ACQUITY UPLC	7.5 µL	ACQUITY UPLC BEH 1.7 μm
		3.0 mm l.D.	I-Class (FTN)	·	ACQUITY UPLC CSH 1.7 μm
		W XBridge 2.5, 3.5, 5 μm			ACQUITY UPLC HSS 1.8 µm
	17 µL	CORTECS 2.7 µm	ACQUITY UPLC I-Class (FL)	5.5 µL	CORTECS UPLC 1.6 µm
2 20 (1200 bal)		3.0 mm I.D.			1.0-2.1 mm I.D.

*These data are based on nominal values for unmodified systems. As such, they are intended for reference only. Any adjustment to a system's plumbing, connectivity, and configuration will change the instrument's bandspread, affecting the quality of chromatography.

L/d_p COMPARISON CHART FOR LC COLUMNS

To convert an HPLC method to a UPLC or UHPLC method with no loss in resolution, select columns that have equivalent length-to-particle-size (L/d_p) ratio.

Waters uses this ratio to compare the resolving power of columns. If you keep the L/d_{ρ} ratio the same for two columns, you will obtain the same resolution. Therefore, for two columns with the same L/d_{ρ} ratio, the more efficient, shorter column (packed with smaller particles) will provide the same resolution in less time.

EXAMPLE: $\frac{150 \text{ mm}}{5 \mu \text{m}} = \frac{150,000 \mu \text{m}}{5 \mu \text{m}} = 30,000$

L/d _p				C	olumn length (mr	n)			
			20	30	50	75	100	150	250
size	sno	1.7	-	17,600	29,400	44,100	58,000	88,200	-
	ъ	2.5	8,000	12,000	20,000	30,000	40,000	60,000	-
Particle (µm)	Fully p	3.5	5,700	8,600	14,300	21,400	28,600	42,900	71,400
P	ĿĽ	5.0	4,000	6,000	10,000	15,000	20,000	30,000	50,000