

AUTHORIZED DISTRIBUTOR MZ-Analysentechnik GmbH, Barcelona-Allee 17• D-55129 Mainz Tel +49 6131 880 96-0. Fax +49 6131 880 96-20

e-mail: info@mz-at.de, www.mz-at.de

3. Organic Acids

Organic acids are weakly acidic substances having carboxyl groups in their molecular structure, and are also referred to as carboxylic acids. When analyzing organic acids, ion exclusion, reversed-phase, ion exchange (ion chromatography), size exclusion, and other types of chromatography are used. Shodex columns for organic acid analysis include RSpak KC-811 (a combination of ion exclusion mode and reversed-phase mode), RSpak DE-413 (polymeric reversed-phase column), and IC SI-50 4E (anion chromatography column), as well as SUGAR SH1011 (column for analysis of saccharides and organic acids, described in Section 2). Table 3-1 shows a lineup of Shodex packing columns for organic acid analysis.

Product Code	Product Name	Separation Mode*1	Theoretical PlateNumber (TP/column)	Particle Size (µm)	ID x Length (mm)
F6378030	RSpak KC-811	IEX+RP	≥17,000	6	8.0 x 300
F6700030	RSpak KC-G	IEX+RP	(Guard column)	10	6.0 x 50
F6700010	RSpak KC-LG	IEX+RP	(Guard column)	12	8.0 x 50
F7008140	RSpak NN-814	IEX+RP	≥9,000	10	8.0 x 250
F6700510	RSpak NN-G	IEX+RP	(Guard column)	10	6.0 x 50
F7001004	RSpak DE-613	RP	≥7,000	6	6.0 x 150
F7001005	RSpak DE-413	RP	≥11,000	4	4.6 x 150
F7009030	RSpak DE-413L	RP	≥17,000	4	4.6 x 250
F7001006	RSpak DE-413S	RP	≥3,000	4	4.6 x 50
F6700150	RSpak DE-G	RP	(Guard column)	10	4.6 x 10
F7001007	RSpak DE-213	RP	≥8,000	4	2.0 x 150
F6700151	RSpak DE-SG	RP	(Guard column)	4	2.0 x 10
F6378100	SUGAR SH1011	SEC + IEX	≥17,000	6	8.0 x 300
F6378101	SUGAR SH1821	SEC + IEX	≥17,000	6	8.0 x 300
F6700080	SUGAR SH-G	-	(Guard column)	10	6.0 x 50
F6995244	IC SI-90 4E	AEC	≥5,000	9	4.0 x 250
F6995245	IC SI-50 4E	AEC	≥10,000	5	4.0 x 250
F6709620	IC SI-90G	AEC	(Guard column)	9	4.6 x 10

Table 3-1. Shodex Columns for Organic Acid Analysis

*1 : SEC (Size Exclusion), IEX (Ion Exclusion), RP (Reversed Phase) , AEC (Anion Exchange)

3-1. Separation Mechanism

Shodex can provide several columns for analysis of organic acids depending on other substances in the sample. (Table 3-2)

Table 3-2. Column Selection for Samples

Column	Separation Mode	Sample
RSpak KC-811	Ion Exclusion + Reversed Phase	General Organic Acids
RSpak NN-814	Ion Exclusion + Reversed Phase	Aromatic Organic Acids
RSpak DE-413	Reversed Phase	General Organic Acids
SUGAR SH1011 SUGAR SH1821	Size Exclusion + Ion Exclusion	Organic Acids and Sugars
IC SI-90 4E IC SI-50 4E	Anion Exchange	Organic Acids and Anions

3-1-1. Ion Exclusion Mode

In organic acid analysis, a strong cation exchange resin with sulfo-groups bound to the packing surface is used. Weak acids, such as organic acids, exhibit only partial dissociation when dissolved in water. In a dissociated state (negatively charged), the positive charge of the cation is neutralized and excluded by the negative charge of the sulfo-groups on the resin surface. There is no concern over organic acid adsorption into the resin. In a non-dissociated state, on the other hand, ion exclusion does not occur; hydrophobic adsorption into the resin substrate occurs instead to allow organic acids to be retained by the resin (Figure 3-1).

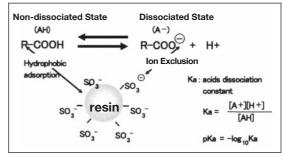


Fig. 3-1 Ion Exclusion Mode

Hence, organic acids are eluted in ascending order of pKa (descending order of acidity) and in descending order of polarity. The packing substrate of KC-811 is a styrene-divinylbenzene copolymer, therefore it is recommended to use NN-814, which has a higher polarity of packing substrate than KC-811, when analyzing aromatic organic acids of low polarity. The packing substrate of NN-814 is poly(hydroxymethacrylate).

3-1-2. Reversed Phase Mode

The reversed-phase mode is the most commonly used separation mode of HPLC. This mode is based on the hydrophobic interaction between the portion of low polarity of the packing and the portion of low polarity of the sample. Hence, elution occurs in descending order of polarity. A key to successful organic acid analysis in reversed-phase mode resides in thoroughly suppressing the dissociation of organic acids and reducing the polarity of the sample. Organic acids are generally reported to become non-dissociated when the eluent has a pH value lower than the pKa by 1.5.

3-1-3. Anion Exchange Mode

The resin surface is positively charged. The cation on the resin is scrambled by the anion of the component mobile phase and the organic acid anion; elution occurs in ascending order of ionic adsorptivity.

3-1-4. Size Exclusion Mode

Organic acids are eluted in ascending order of molecular size. Molecules larger than the pore size of resin are eluted V₀ position.

3-1-5. Detection of Organic Acids

The functional group shared by organic acids is the carboxyl group, which has a UV absorption band between 200 and 210nm, thus enabling the use of a UV detector. However, because many other organic substances have the same wavelength band for UV absorption, and also because the molar extinction coefficient is low at 50 to 70, detection of organic acids is likely to be influenced by impurities. The RI detector lacks selectivity and remains somewhat problematic with regard to sensitivity. Detection using the conductivity detector (CD) is prone to sensitivity variation depending on the kind of organic acid. As a method of selectively detecting organic acids, the post-column method using a pH indicator is available which employs a visible absorption spectrum (VIS) detector. (Fig. 3-2)

Column	:	Shodex RSpak KC-G (6.0mmID x 50mm) + KC-811 (8.0mmID x 300mm)x2
Eluent Flow Rate Column Temp.	:	3mM HClO₄ aq. 1.0mL/min

ample:	
~~~	

Sa

- 800ppm Citric Acid 1. 900ppm Tartaric Acid
- 2.
- 800ppm Malic Acid 3.
- 700ppm Succinic Acid 4.
- 5. 1100ppm Lactic Acid
- 600ppm Formic Acid 6.
- 700ppm Acetic Acid 7.
- 8. 1500ppm Levulinic Acid
- 9. 1500ppm Pyroglutamic Acid

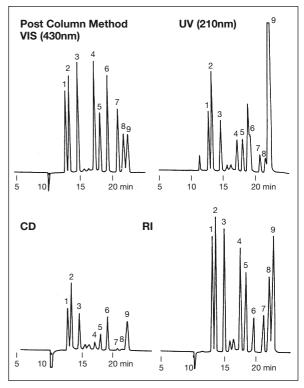



Fig. 3-2 Comparison of Chromatograms with Various Detectors

## 3-2. Organic Acids

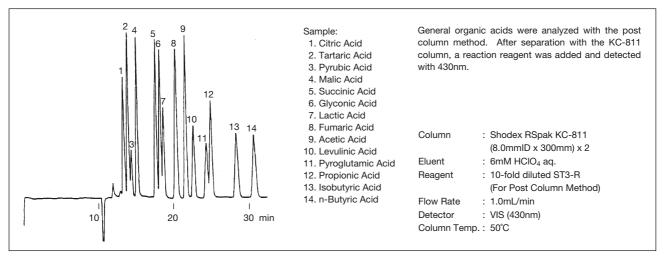



Fig. 3-3. Analysis of Organic Acids with Post Column Method

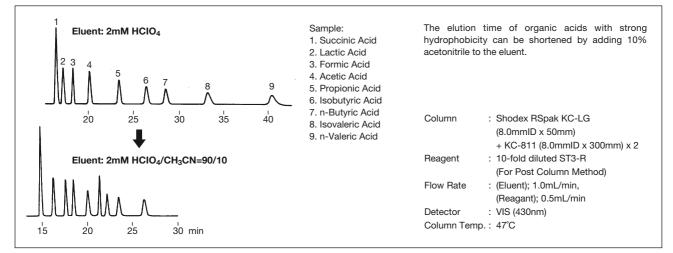



Fig. 3-4 Effect of Elution of Organic Acids with Addition of Acetonitrile

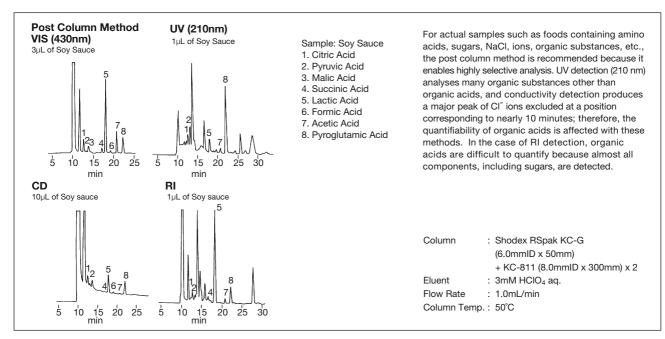



Fig. 3-5 Comparison of Results of Soy Sauce with Various Detectors

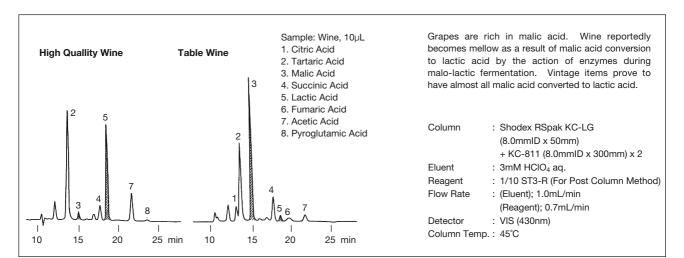
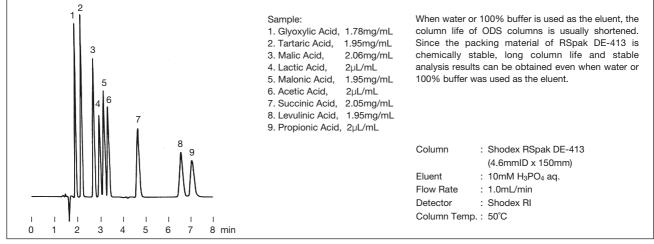




Fig. 3-6 Organic Acids in White Wine





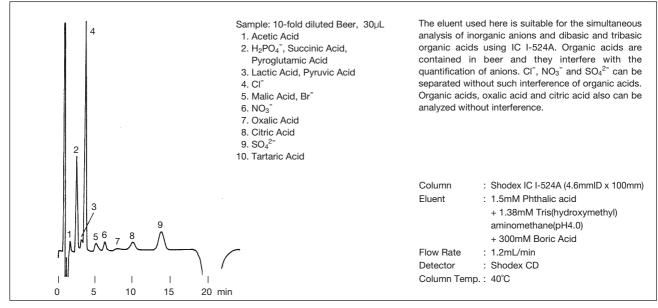



Fig. 3-8 Organic Acids and Anions in Beer (Anion Exchange Mode)

Tables of elution volume of organic acids with each column are shown in appendix-B, C and D.