

C18, C18-WP, HFC18-16, HFC18-30, RP-AQUA, C8, C30, PFP, Phenyl, C8-30, C8-30HT, C4-30, C4-100, HILIC-Amide, HILIC-S and 2-EP

ChromaNik Technologies Inc.

"SunShell " is a core shell silica column made by ChromaNlk Technologies.

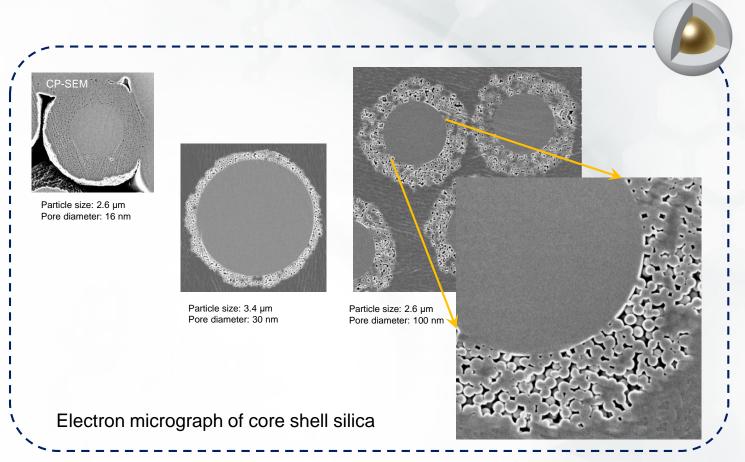
The next generation to Core Shell particle

Superficially porous silica

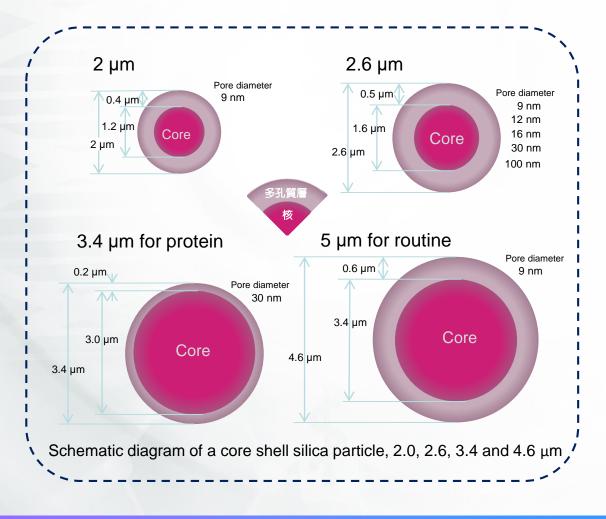
ChromaNik Technologies Inc

Features of SunShell

* 1.2 μm , 1.6 μm , 3.0 μm and 3.4 μm of core and 0.4 μm , 0.5 μm , 0.2 μm and 0.6 μm of superficially porous silica layer

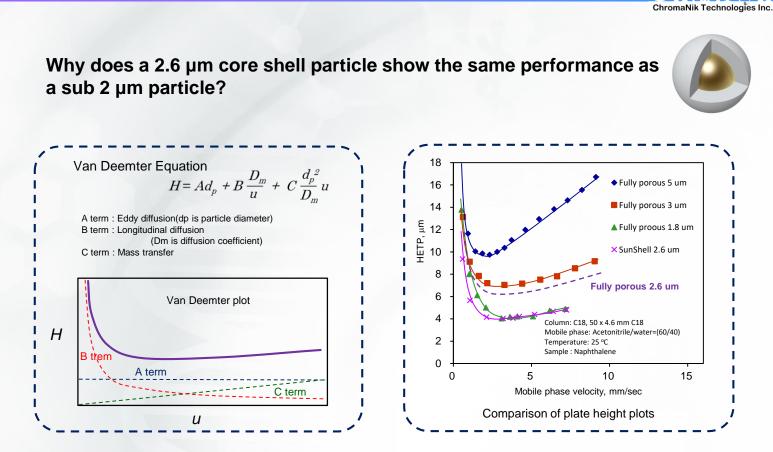

*Higher efficiency and higher throughput to compare with totally porous silica with same size

*Same chemistry as Sunniest technology (reference page 6)


*Good peak shape for all compounds such as basic, acidic and chelating compounds

*High stability (pH range for SunShell C18, 1.5 to 10) * Low breeding

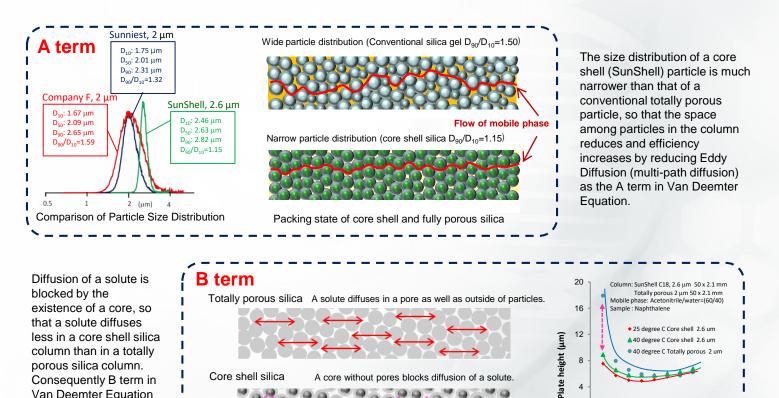
Core shell silica particles were embedded in resin, cross-section processed by Ar ion milling, Os (osmium) vapor deposited for conduction treatment, and observation. You can see the core (fused silica) and the porous layer around it.



2

Van Deemter Equation

reduces in the core


shell silica column.

ACT IN A

SunShell C18 shows same efficiency as a sub 2 µm C18. In comparison between fully porous 2.6 µm and core shell 2.6 µm (SunShell), SunShell shows lower values for A term, B term and C term of Van Deemter equation. The core shell structure leads higher performance to compare with the fully porous structure.

All terms in Van Deemter Equation reduce.

0000

0

۵

Difference of longitudinal diffusion

ä

00

6

0

4

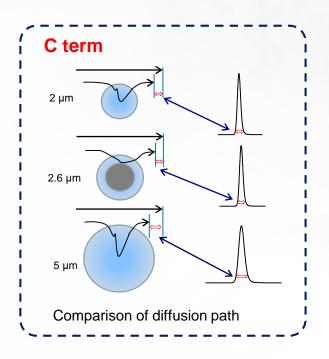
0

0 0.2 0.4 0.6 0.8

Flow rate (mL/min)

Plot of Flow rate and Plates height

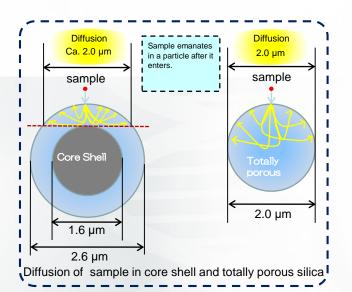
0


0

0

6

0



As shown in the left figure, a core shell particle has a core so that the diffusion path of samples shortens and mass transfer becomes fast. This means that the C term in Van Deemter Equation reduces. In other words, HETP (theoretical plate) is kept even if flow rate increases. A 2.6 µm core shell particle shows as same column efficiency as a totally

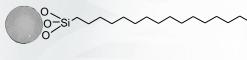
porous sub-2 µm particle.

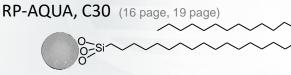
Considering diffusion of solute within pore

The left figure shows that a diffusion width of a sample in a 2.6 μ m core shell particle and a 2 μ m totally porous particle. Samples or solutes enter into the particle and move by diffusion, then they go out of a particle. In this moment, sample peak width is broadened. This broadening width is statistically same for 2.6 μ m core shell particle and 2 μ m fully porous particle. The 2.6 μ m core shell particle is superficially porous, so that the diffusion width becomes narrower than particle size. Same diffusion means same efficiency.

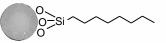
Comparison of Performance by Plate/Pressure

Back pressure and theoretical plate were compared for 2 μ m and sub 2 μ m C18 and 2.6 μ m SunShell C18. All columns showed almost the same theoretical plate except for brand A C18 1.9 μ m. However back pressure was not same. Especially Brand C C18 1.7 μ m showed the highest back pressure. And SunShell C18 2.6 μ m showed the lowest back pressure. On the comparison of theoretical plate per back pressure, SunShell indicated the largest value. This is a big advantage.

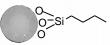

Column: 50 x 2.1 mm C18, Mobile phase: Acetonitrile/water=(70/30), Temperature: 25 °C

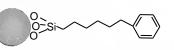


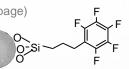
SUNSHELL STATIONARY PHASE


Reversed phase

C18, C18-WP (7 page, 16 page, 20 page)



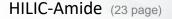

C8, C8-30, C8-30HT (16 page, 20 page, 21 page)

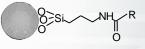

C4-30, C4-100 (20 page, 21 page)

Phenyl (16 page)

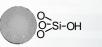
PFP (16 page)

HFC18-16, HFC18-30 (20 page)


0 Si

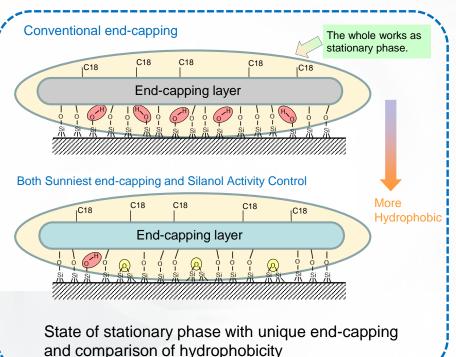

**All revered phases except for PFP was end-capped at high temperature using Sunniest Endcapping technique.

SFC



HILIC

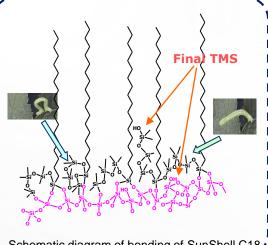
HILIC-S (23 page)



*Stationary phase for both SFC and HILIC was not end-capped.

ChromaNik Technologies Inc.

Unique end-capping by new concept

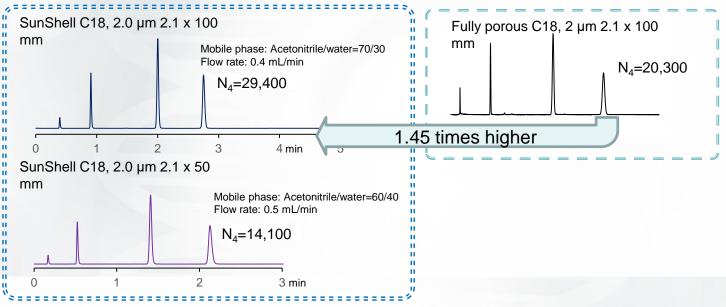

This figure shows comparison of hydrophobicity between two C18 stationary phases. We developed silanol activity control technique which was a reaction at extremely high temperature. This technique makes residual silanol groups change to siloxane bond. The upper one is a C18 phase with conventional end-capping and the lower one is a C18 phase with both Sunniest end-capping and silanol activity control. A residual silanol group contributes as a polar site and makes hydrophobicity of stationary phase decrease. On the other hand siloxane bond in the lower one doesn't make hydrophobicity decrease. Consequently the lower one is more hydrophobic than the upper one.

End-capping method

- 1) Unique end-capping reagent <Hexamethetyltrisiloxane>>
- 2) Secondly TMS end-capping

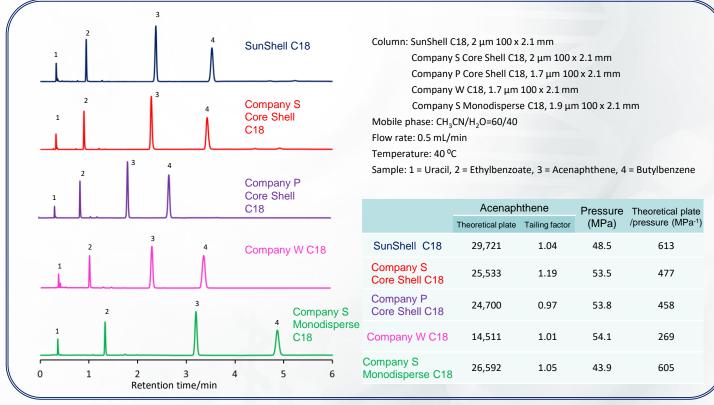
Schematic diagram of bonding of SunShell C18/

An end-capping of hexamethyltrisiloxane works as an arm. This arm moves like a Geometrid caterpillar, so that a functional group on the tip of the arm can bond with a silanol group which is located anywhere. Finally TMS reagent is bonded to a remaining silanol group.


SunShell C18, 2 µm, 2.6 µm, 5 µm

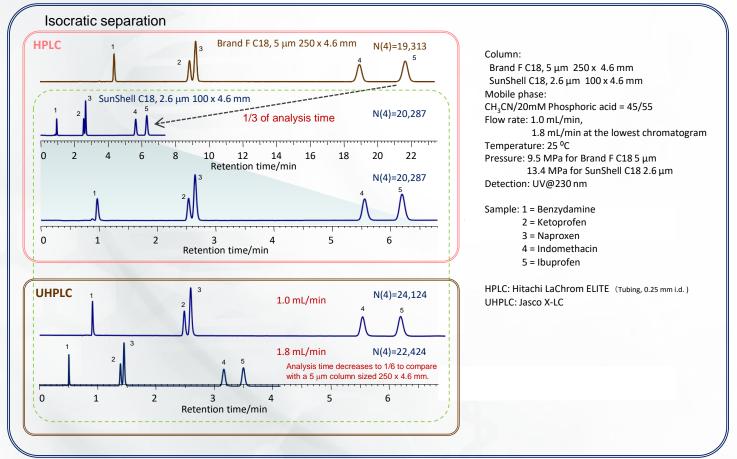
ChromaNik Technologi

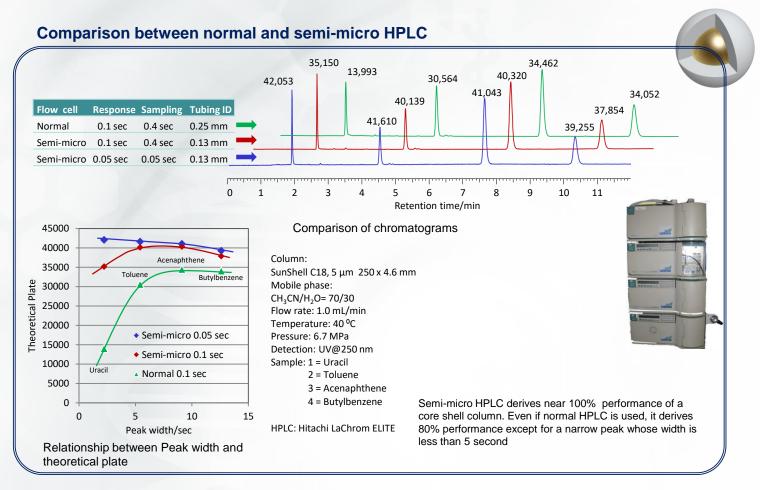
Characteristics of SunShell C18


		Core shell	silica		C18 (USP L1)							
	Particle size	Pore diameter	Specific surface area	Carbon content	Bonded phase	End-capping	Maximum operating pressure	Available pH range				
SunShell C18	2.0 µm	9 nm	120 m²/g	6.5%	C18	Sunniest endcapping	100 MPa or 14504 psi	1.5 - 10				
SunShell C18	2.6 µm	9 nm	150 m²/g	7%	7% C18	Sunniest endcapping	60 MPa or 8,570 psi	1.5 - 10				
SunShell C18	4.6 µm	9 nm	90 m²/g	5.5%	C18	Sunniest endcapping	50 MPa or 7,141 psi	1.5 - 10				

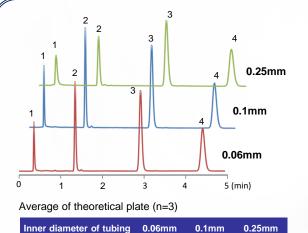
Core Shell particle shows 1.4 to 1.5 times higher plate than fully porous particle.

Theoretical plate and tailing factor

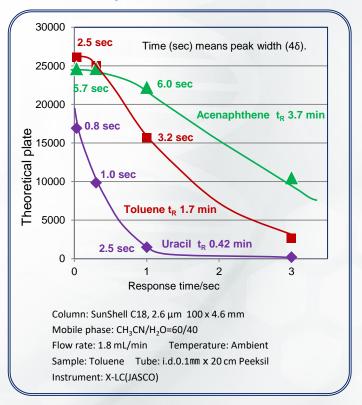

Used columns: SunShell C18 2 µm, Ascentis Express C18 2 µm, Kinetex C18 1.7 µm, Acquity BEH C18 1.7 µm, Titan C18 1.9 µm


*Ascentic Express is a registered trade mark of Sigma Aldrich. Titan is a registered trade mark of Sigma Aldrich. Comparative separations may not be representative of all applications. Comparison of retention and plate using HPLC 2 SunShell C18 5 μm Column size: 150 x 4.6 mm N₆=20,000 8 MPa Mobile phase: CH₃OH/H₂O=75/25 Flow rate: 1.0 mL/min 3 Temperature: 40 °C Sample: 1 = Uracil SunShell C18 2.6 µm N₆=31,000 2 = Caffeine 3 = Phenol 21 MPa 4 = Butylbenzene 5 = o-Terphenyl 6 = Amylbenzene ₃ Sunniest C18 5 μm 7 = Triphenylene 1 $N_{e} = 14,000$ 6 MPa HPLC: Hitachi LaChrom ELITE (Tubing, 0.25 mm i.d.) 5 10 30 25 15 20 Retention time/min Totally porous silica Sunniest C18, 5 μm Core shell silica SunShell C18, 2.6 µm Core shell silica SunShell C18, 5 µm There is a little Specific surface area 340 m²/g 150 m²/g 90 m²/g difference of k between Packings weight (150x4.6mm) 3.2 g 1.5 g 2.7 g totally porous and core Surface area in a column 510 m²/g (100%) 405 m²/g (79%) 288 m²/g (56%) shell particles. Retention Retention Retention Retention Retention Retention factor (k) factor (k) factor (k) time (t_R) time (t_R) time (t_R) 1) Uracil 0 1.70 0 1.34 0 1.30 6) Amylbenzene 19.96 10.74 16.56 11.36 13.43 9.33 100% Relative value of Amylbenzene 100% 83% 106% 67% 87%

ChromaNik Technologies Inc.


Examples of transfer from a conventional 5 µm column to SunShell column

Effect of inner diameter of tubing

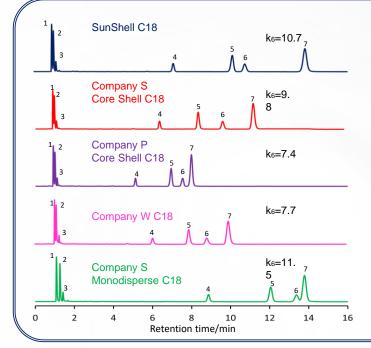


	inner diameter of tubing	0.06mm	0.1mm	0.25mm							
	Peak (1)	792	785	246							
	Peak (2)	7790	7652	3535							
	Peak (3)	10704	10345	7998							
	Peak (4)	10113	9772	7689							
(Column: SunShell C18, 2.6 µ	ιm 50 x 2.1	mm								
ſ	Mobile phase: CH ₃ CN/H ₂ O=60/40										
F	Flow rate: 0.3 mL/min Temperature: Ambient										
-	Tube leveth, 20 ers (Deel, f	rom the col	ump to the	flow coll)							

Tube length: 30 cm (Peek, from the column to the flow cell) Instrument: X-LC(JASCO) Response time: 0.01 sec

The above theoretical plate was compared changing the inner diameter of tubing between a column and a flow cell of the detector. A tubing with a large inner diameter has a large dead volume, so that it makes the peak width be wide. As a result, theoretical plate decreases. I recommend to use the tubing with 0.1 mm or less than 0.1 mm inner diameter for core shell columns.

Effect of response time of detector


The response time of a detector is important. Regarding uracil, the real peak width is less than 0.8 sec. When the peak width is less than 1 sec, 0.03 sec of response time is needed. Furthermore, the sampling rate of an integrator should be set to be 0.1 sec.

SunShell C18 2 µm

Comparison of core shell 2 µm and totally porous sub 2 µm

Used columns: SunShell C18 2 µm, Ascentis Express C18 2 µm, Kinetex C18 1.7 µm, Acquity BEH C18 1.7 µm, Titan C18 1.9 µm

Separation of standard samples

Column: SunShell C18, 2 μm 100 x 2.1 mm

Company S Core Shell C18, 2 μm 100 x 2.1 mm

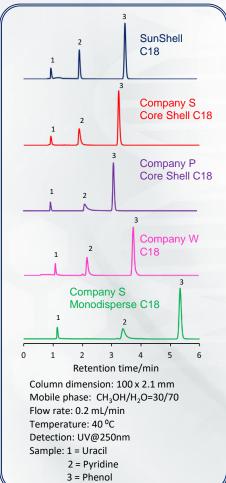
Company P Core Shell C18, 1.7 μm 100 x 2.1 mm

Company W C18, 1.7 μm 100 x 2.1 mm

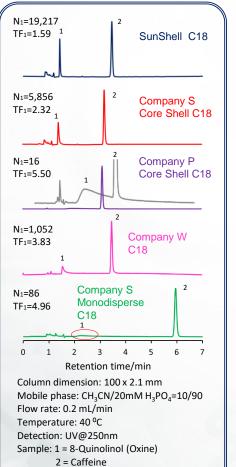
Company S Monodisperse C18, 1.9 μm 100 x 2.1 mm

Mobile phase: CH₃OH/H₂O=75/25

Flow rate: 0.2 mL/min

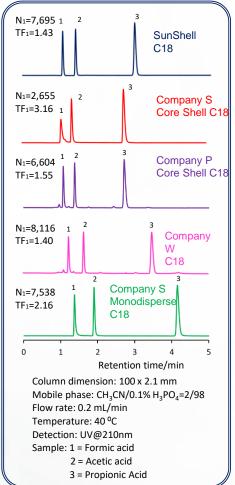

Temperature: 40 °C

Sample: 1 = Uracil, 2 = Caffeine, 3 = Phenol, 4 = Butylbenzene


5 = o-Terphenyl, 6 = Amylbenzene, 7 = Triphenylene

	Hydrogen bonding (Caffeine/Phenol)	Hydrophobicity (Amylbenzene/Butylbenzene	Steric selectivity (Triphenylene/o-Terphenyl)
SunShell C18	0.43	1.59	1.41
Company S Core Shell C18	0.37	1.59	1.38
Company P Core Shell C18	0.45	1.57	1.17
Company W C18	0.35	1.55	1.30
Company S Monodisperse C18	0.53	1.58	1.16

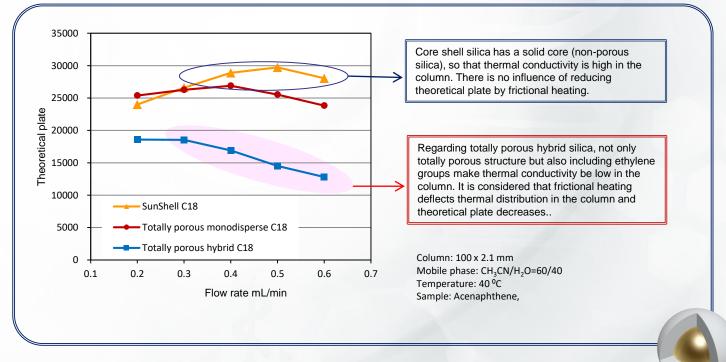
Comparison of Pyridine (2) as a basic compound



Comparison of Oxine (1) as a metal chelating compound

Comparison of Formic acid (1) as an acidic compound

ChromaNik Technologies Inc



ChromaNik Technologies Inc. SunShell C18 2 µm

N₄=21.053 N₄=21.096 TF4=1.08 TF₄=1.18 SunShell C18 N4=7,440 Company S N4=6,778 TF4=3.34 Core Shell C18 TF4=3.58 N₄=7,059 N4=10,157 Company P TF₄=4.39 TF4=3.04 Core Shell C18 N₄=18,722 N₄=14,555 TF4=1.08 Company W TF4=1.27 C18 0 2 3 4 0 2 3 4 5 6 5 1 Retention time/min Retention time/min Company S N4=6,374 N₄=9,371 л Monodisperse TF4=4.69 TF4=4.72 C18 0 12 2 4 6 8 10 0 10 2 4 6 8 12 14 16 Retention time/min Retention time/min Column dimension: 100 x 2.1 mm Column dimension: 100 x 2.1 mm Mobile phase: CH₃CN/20 mM Phosphate buffer pH 7.0=60/40 Mobile phase: CH₃CN/10 mM ammonium acetate pH 6.8=40/60 Flow rate: 0.3 mL/min Flow rate: 0.3 mL/min Temperature: 40 °C Temperature: 40 °C Detection: UV@250 nm Detection: UV@250 nm Sample: 1 = Uracil, 2 = Propranolol, 3 = Nortriptyline, 4 = Amitriptyline Sample: 1 = Uracil 2 = Propranolol 3 = Nortriptyline 4 = Amitriptyline

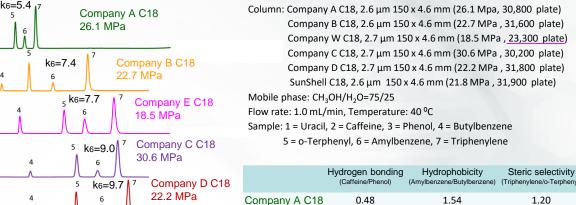
Comparison of Amitriptyline (4) as a strong basic compound

Decreasing of theoretical plate due to frictional heating effect

Comparison of core shell 2.6 µm

columns

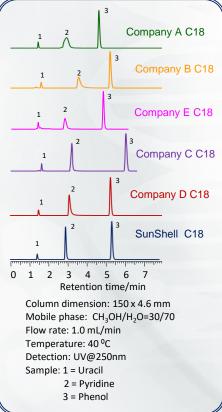
1 2


3

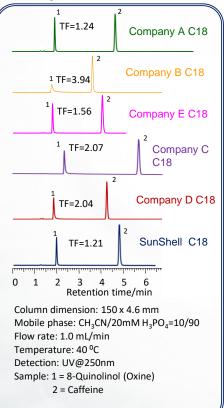
2

² 3

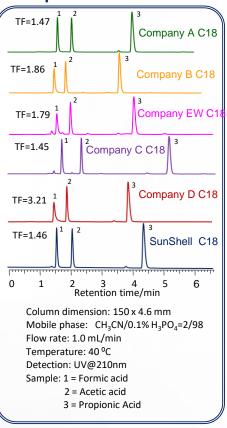
1


Comparison of standard samples between core shell C18s

0.35 1.50 Company B C18 1.56 SunShell C18 3 Company E C18 0.38 1.59 1.32 k6=10.4 21.8 MPa Company C C18 0.42 1.57 1.25 Company D C18 0.44 1.60 1.31 0 2 4 6 8 10 12 14 16 18 20 22 SunShell C18 0.39 1.60 1.46 Retention time/min


Retention of standard samples and back pressure were compared for six kinds of core shell type C18s. Company A C18 showed only a half retention to compare with SunShell C18. Steric selectivity becomes large when ligand density on the surface is high. SunShell C18 has the largest steric selectivity so that it has the highest ligand density. This leads the longest retention time.

Comparison of pyridine


Residual silanol groups make pyridine be tailing under methanol/water mobile phase condition. SunShell C18 shows a sharp peak for pyridine.

Comparison of Oxine

8-Quinolinol (Oxine) is a metal chelating compound. Metal impurities in the core shell particle leads the tailing for oxine peak.

Comparison of formic acid

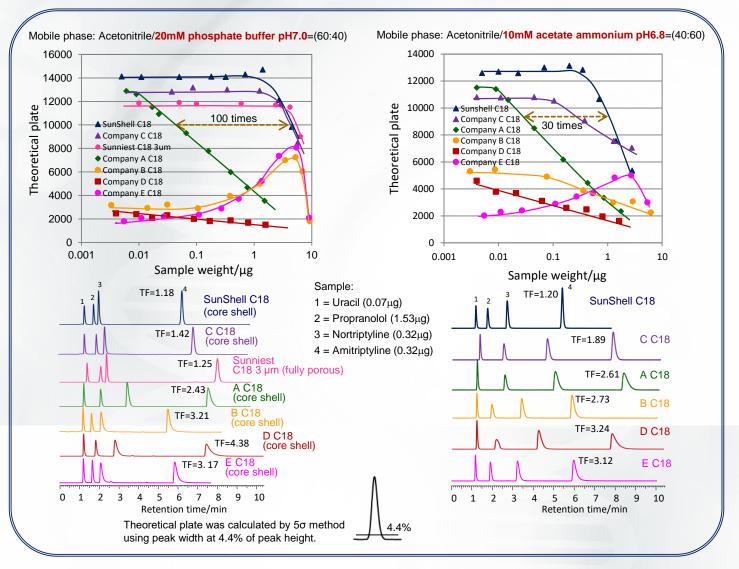
Formic acid is used as an indicator for a acidic inertness. SunShell and Company A and C C18 show a sharp peak.

2. Accucore C18, 2.6 μm 3. PoroShell C18 EC, 2.7 μm

- 4. Ascentis Express C18, 2.7 μm
- 5. Cortecs C18, 2.7 μm 6. SunShell C18, 2.6 μm

6. SunShell C18, 2.6 μm

1. Kinetex C18, 2.6 μm


Used columns

ChromaNik Technologies Inc.

Loading capacity of amitriptyline as a basic compound

Amitriptyline overlords much more at acetonitrile/buffer mobile phase than methanol/buffer. Three kinds of core shell C18s were compared loading capacity of amitriptyline at three different mobile phases.

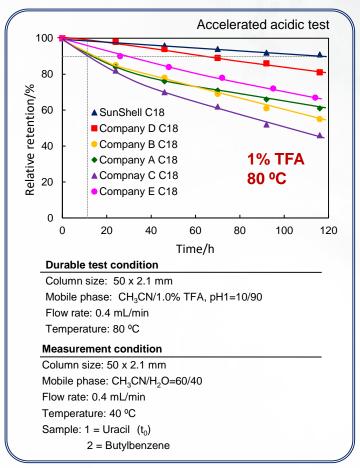
Common condition: Column dimension, 150 x 4.6 mm, flow rate; 1.0 mL/min, temperature; 40 °C

Physical properties

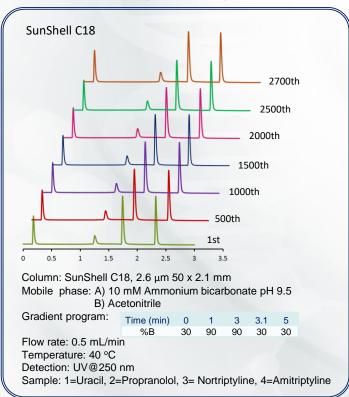
	Carbon loading (%)	Specific surface area ^a (m ² /g)	Pore volume ^a (mL)	Pore diameter ^a (nm)
SunShell C18	7.3 (7) ^b	125 (150) ^b	0.261	8.34 (9) ^b
Ascentis Express C18	8.0	133 (150) ^b	0.278	8.20 (9) ^b
PoroShell C18 EC	8.5 (8) ^b	135 (130) ^b	0.414	12.3 (12) ^b
Accucore C18	8.8 (9) ^b	130 (130) ^b	0.273	8.39 (8) ^b
Cortecs C18	7.3 (6.6) ^b	113	0.264	9.32
Kinetex C18	4.9 (12 effective) ^b	102 (200 effective) ^b	0.237	9.25 (10) ^b

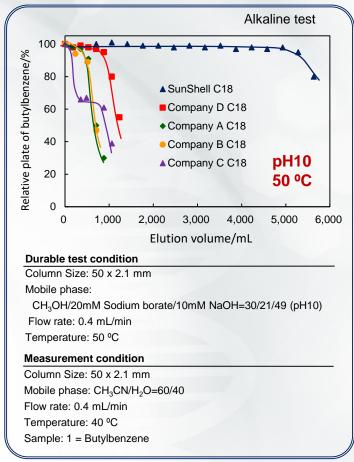
a. Measured after sintered at 600 degree Celsius for 8 hours.

b. Value cited in company brochure or literature.


All columns are core shell type. All columns sized 150 x 4.6 mm except for company E show 38,000 to 40,000 plates for a neutral compound. However regarding a basic compound like amitriptyline, SunShell C18 and company C C18 showed a good peak, while Company A, B and D C18 showed a poor peak. Company A C18 overloaded at more than 0.01 μ g of amitriptyline while SunShell C18 overloaded at more than from 0.3 to 1 μ g of amitriptyline. Surprisingly loading capacity of company A C18 was only one hundredth to compare with SunShell C18 under acetonitrile/20mM phosphate buffer pH7.0=(60:40) mobile phase. Company D C18 always showed poor peak of amitriptyline.

- Comparison column
- 1. Kinetex C18, 2.6 μm
- 2. Accucore C18, 2.6 μm
- 3. PoroShell C18 EC, 2.7 μm 4. Ascentis Express C18. 2.7 μm
- 4. Ascentis Express C18, 2.7 μm 5. Cortecs C18 2.7 μm
- 6. SunShell C18, 2.6 μm

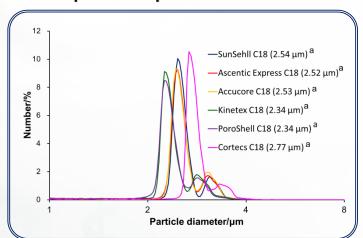

Evaluation of Stability



Stability under acidic pH condition was evaluated at 80 °C using acetonitrile/1% trifluoroacetic acid solution (10:90).

★Sunshell C18 has kept 90% retention for 100 hours under such a severe condition. SunShell C18 is 5 to 10 times more stable than the other core shell C18.

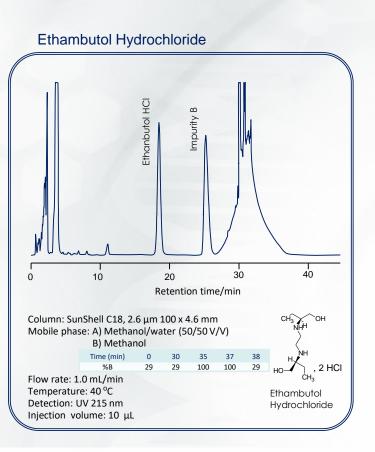
Continuous analysis under pH9.5 condition



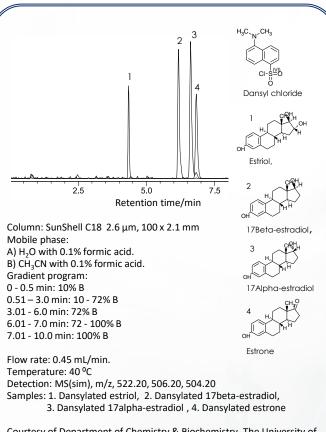
Stability under basic pH condition was evaluated at 50 °C using methanol/Sodium borate buffer pH 10 (30:70) as a mobile phase. Sodium borate is used as a alkaline standard solution for pH meter, so that its buffer capacity is high.

Elevated temperature of 10 °C makes column life be one third. The other company shows stability test at ambient (room temperature). If room temperature is 25 °C, column life at room temperature (25 °C) is sixteen times longer than that at 50 °C.

★ SunShell C18 is enough stable even if it is used under pH 10 condition. Regarding stability under basic pH condition, there is little C18 column like SunShell C18 except for hybrid type C18. It is considered that our end-capping technique leads high stability.

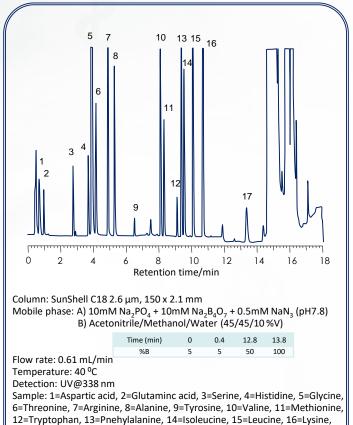

*Measured using Beckman Coulter Multisizer 3 after C18 materials were sintered at 600 degree Celsius for 8 hours. The measured value of each sintered core shell silica is considered to be different from that of the original core shell silica.

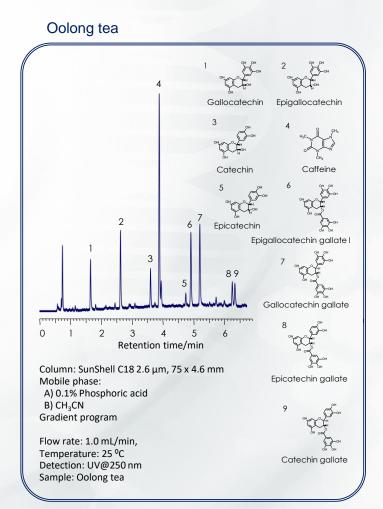
a. Median particle size


Comparison of particle size

14

SunShell



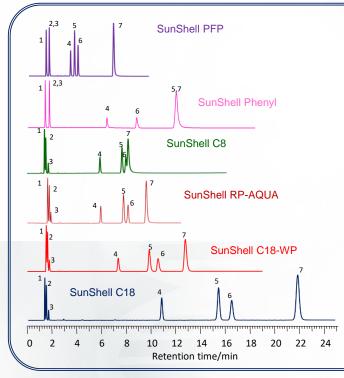

Dansylated estrogen hormones

Courtesy of Department of Chemistry & Biochemistry, The University of Texas at Arlington

Amino Acids derivatized with OPA and FMOC

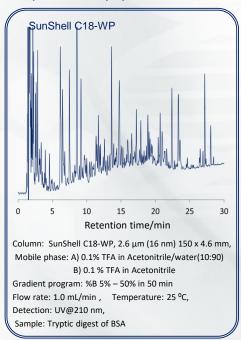
17=Proline

SunShell C18-WP, RP-AQUA, C8, Phenyl, PFP, 2.6 µm

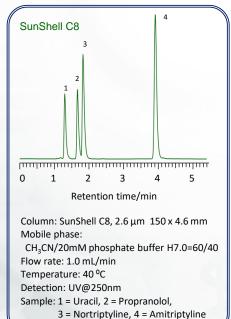

(Pentafluoropheny)

ChromaNik Technologies Inc.

Characteristics of SunShell

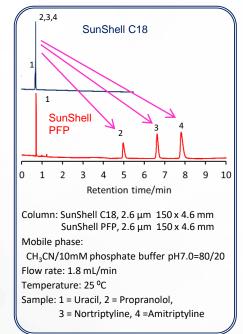

	Co	ore shell s	ilica		Bonding phase							
	Particle size	Pore diameter	Specific surface area	Carbon content	Bonded phase	USP L line	End-capping	Maximum operating pressure	Available pH range			
SunShell C18	2.6 µm	9 nm	150 m²/g	7%	C18	L1	Sunniest endcapping	60 MPa	1.5 - 10			
SunShell C18-WP	2.6 µm	16 nm	90 m²/g	5%	C18	L1	Sunniest endcapping	60 MPa	1.5 - 10			
SunShell RP-AQUA	2.6 µm	16 nm	90 m²/g	4%	C28	Equivalent to L62	Sunniest endcapping	60 MPa	2 - 8 ^{a)}			
SunShell C8	2.6 µm	9 nm	150 m²/g	4.5%	C8	L7	Sunniest endcapping	60 MPa	1.5 - 9			
SunShell Phenyl	2.6 µm	9 nm	150 m²/g	5%	Phenylhexyl	L11	Sunniest endcapping	60 MPa	1.5 - 9			
SunShell PFP	2.6 µm	9 nm	150 m²/g	4.5%	Pentafluorophenyl	L43	TMS endcapping	60 MPa	2 - 8			

Comparison of standard samples

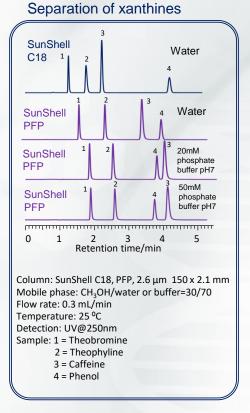


Column: SunShell 150 x 4.1		AQUA, C8, Phenyl, PFP, 2	6 μm
Mobile phase: CH			
Flow rate: 1.0 mL/	5 . 2 .		
Temperature: 40			
Sample: 1 = Uracil 2 = Caffe			
2 = Carre 3 = Phen			
4 = Butyl	penzene	C .	
5 = o-Ter		\bigcirc	
6 = Amyll			
7 = Triphe			
	Hydrogen bonding (Caffeine/Phenol)	Hydrophobicity (Amylbenzene/Butylbenzene)	Steric selectivity (Triphenylene/o-Terphenyl)
PFP	1.00	1.31	2.38
Phenyl	1.00	1.48	1.01
C8	0.32	1.46	1.08
RP-AQUA	0.52	1.52	1.30
C18-WP	0.40	1.55	1.35
SunShell C18	0.39	1.60	1.46

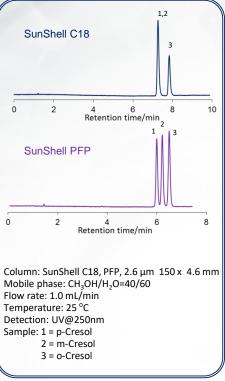
Separation of peptides

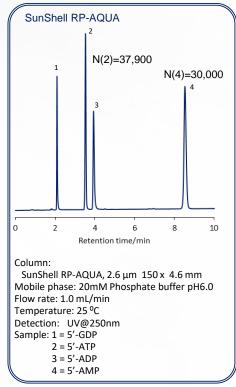


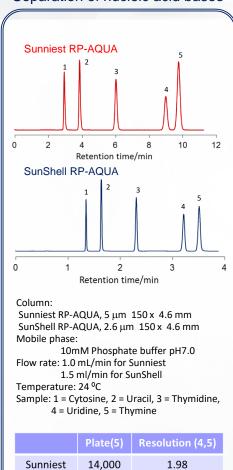
Separation of amitriptyline using C8



Separation of basic compounds


a) Under 100% aqueous condition


ChromaNik Technolog


Separation of cresol isomers

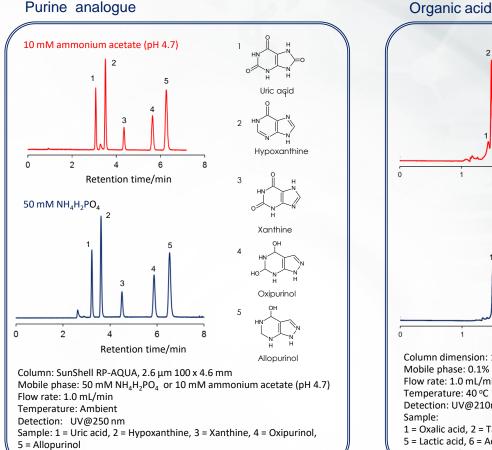
Separation of nucleotides

Separation of nucleic acid bases

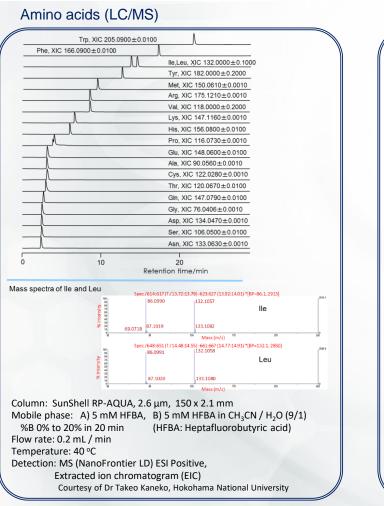
SunShell

30,000

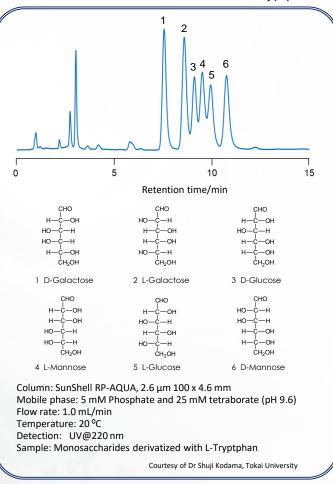
3.79


	SunShell C18	5	Column: SunShell C18, 30 x 3.0 mm. Mobile phase: A) Water, B) Acetonitrile; Gradient (Acetonitrile %), 0.00 min - 35%, 0.40 min - 100%, 0.80 min - 100%, 0.85 min - 35%, 1cycle; 1.8min, (High-pressure gradient). Flow rate: 1.0 mL/min. Temperature: 40 °C. Injection Volume: 1 μ L. Wavelength: 200 - 500nm, CH-9, 215 - 500nm (Max Abs.). Sample: Mixture of ultraviolet absorbers, 1 = 2,2',4,4'-Tetrahydroxybenzophenone, 2 = Ethyl <i>p</i> -aminobenzoate, 3 = 2, 4-Dihydroxybenzophenone, 4 = 2,2'-Dihydroxy-4-methoxybenzophenone, 5 = 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone, 7 = 2-(2'-Hydroxy-5'-metylphenyl) benzotriazole, 8 = 4-tert-Butylphenyl salicylate. Courtesy of Jasco.
(0 0.2 0.4 Retention	0.6 0.8 1 time/min	

A peak width is just one second!!


High-throughput separation

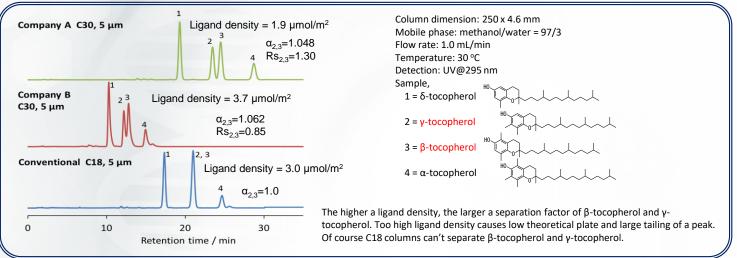
ChromaNik Technolog



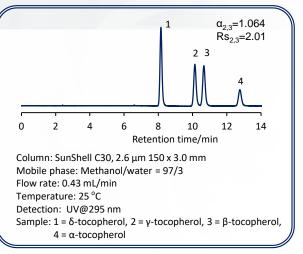
Purine analogue

S company Core shell C18 AQ, 2.7 µm Number 1and 8 peaks are broaden. 11 4 Retention time/min SunShell RP-AQUA, 2.6 µm Retention time/min Column dimension: 150 x 4.6 mm Mobile phase: 0.1% H₃PO₄ Flow rate: 1.0 mL/min Temperature: 40 °C Detection: UV@210nm 1 = Oxalic acid, 2 = Tartaric acid, 3 = Formic acid, 4 = Malic acid, 5 = Lactic acid, 6 = Acetic acid, 7 = Diglycolic acid, 8 = Maleic acid, 9 = Citric acid, 10 = Succinic acid, 11 = Fumaric acid.

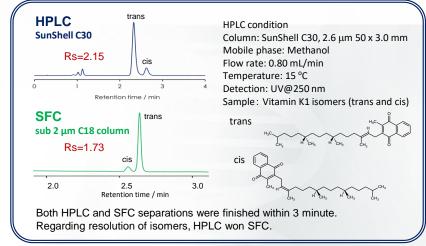
Monosaccharides derivatized with L-Tryptphan



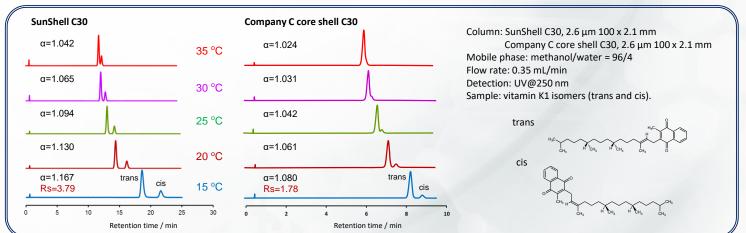
SunShell C30, 2.6 µm


Specification of SunShell C30

			Core s	shell silica		Bonding phase						
	Particle sizeCore sizePore sizeS(μm)(μm)(nm)		Specific surface area (m ² /g)	Carbon loading (%)	Ligand	USP L category	End-capping	Maximum pressure	pH range			
SunShell	C30	2.6	1.6	12	95	7	C30	L62	TMS	60 MPa	1.5 - 9	


Problem of C30 column

Separation of tocopherols

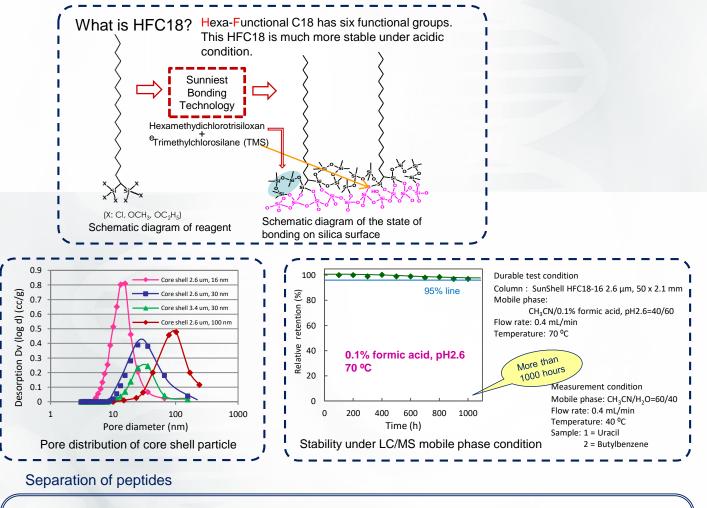


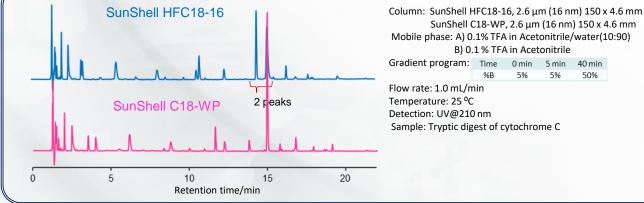
Fast separation of vitamin K1 isomers

ChromaNik Technologies Inc

Comparison of isomers separation of Vitamin k1

SunShell 2.6 µm C18-WP, HFC18-16, HFC18-30, C8-30, C8-30HT, C4-30, C4-100

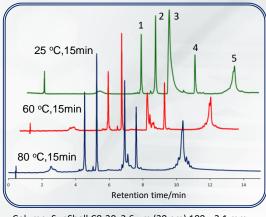

ChromaNik Technologies Inc


Characteristics of SunShell

For separation of peptides and proteins

	С	ore shell	silica				Bonding phase	2		
	Particle size	Pore diameter	Specific surface area	Stationary Carbo phase conte		Ligand density	End-capping	Maximum operating pressure	Available pH range	USP L line
SunShell C18-WP	2.6 µm	16 nm	90 m²/g	C18	5 %	$2.5\mu mol/m^2$	Sunniest endcapping	60 MPa or 8,570 psi	1.5 - 10	L1
SunShell HFC18-16	2.6 µm	16 nm	90 m²/g	C18	2.5%	1.2 µmol/m ²	Sunniest endcapping	60 MPa or 8,570 psi	1.5 – 9	L1
SunShell HFC18-30	2.6 µm	30 nm	40 m²/g	C18	1.3%	$1.2 \mu mol/m^2$	Sunniest endcapping	60 MPa ^a or 8,570 psi ^a	1.5 - 9	L1
SunShell C8-30	2.6 µm	30 nm	40 m²/g	C8	1.2%	$2.5\mu mol/m^2$	Sunniest endcapping	60 MPa ^a or 8,570 psi ^a	1.5 – 9	L7
SunShell C8-30HT	3.4 µm	30 nm	15 m²/g	C8	0.5%	$2.5\mu mol/m^2$	Sunniest endcapping	60 MPa ^a or 8,570 psi ^a	1.5 – 9	L7
SunShell C4-30	2.6 µm	30 nm	40 m²/g	C4	0.9%	3 µmol/m ²	Sunniest endcapping	60 MPa ^a or 8,570 psi ^a	1.5 – 8	L26
SunShell C4-100	2.6 µm	100 nm	22 m²/g	C4	0.6%	3 µmol/m²	Sunniest endcapping	60 MPa ^a or 8,570 psi ^a	1.5 - 8	L26

a: 50MPa, 7141psi for 4.6 mm i.d. column



Mobile phase: A) 0.1% TFA in Acetonitrile/water(10:90) B) 0.1 % TFA in Acetonitrile Gradient program: Time 0 min 5 min 40 min %В 5% 5% 50% Flow rate: 1.0 mL/min Temperature: 25 °C Detection: UV@210 nm Sample: Tryptic digest of cytochrome C

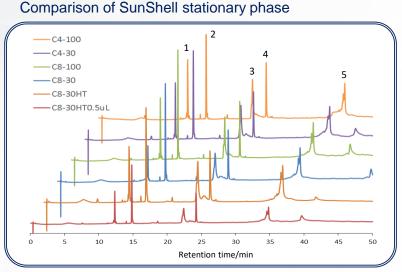
SunShell C18-WP, 2.6 µm (16 nm) 150 x 4.6 mm

SunShell 2.6 µm C8-30, C8-30HT, C4-30, C4-100

Comparison of column temperature

Column: SunShell C8-30, 2.6 µm (30 nm) 100 x 2.1 mm Mobile phase: A) 0.1% TFA in water B) 0.08 % TFA in acetonitrile Gradient program: Time 0 min 15 min %B 20% 65%

Flow rate: 0.5 mL/min , Temperature: 25 °C 60 °C or 80 °C Detection: UV@215 nm, Sample:1 = Cytochrome C, 2 = Lysozyme, 3 = BSA, 4 = Myoglobin, 5 = Ovalbumin


A macromolecule compound like a protein diffuses very slowly, so that an elevated temperature makes a peak be shaper and improves separation. BSA peak seemed to be tailing at 25 degree Celsius. BSA, however, was separated several peaks at 80 degree Celsius.

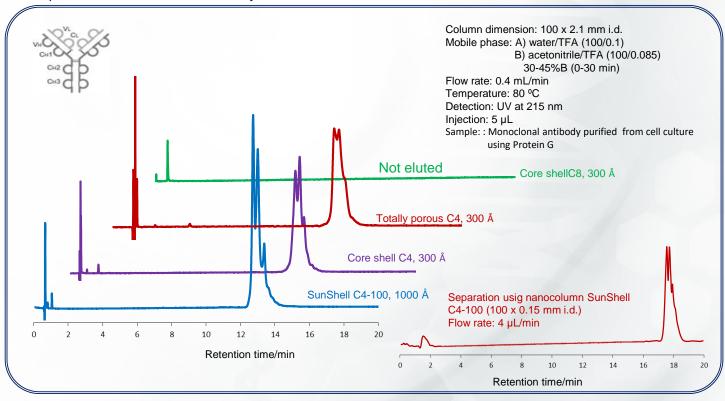
Separation of monoclonal antibody

For separation of peptides and proteins

ChromaNik Technolog

Column dimension: 100 x 2.1 mm,

Mobile phase: A) 0.1% TFA in water, B) 0.1 % TFA in Acetonitrile Gradient program: Time 0 min 60 min


8 20% 65% program: Time U min

Flow rate: 0.5 mL/min, Temperature: 80 °C, Detection: UV@215 nm, Injection volume: 1.0 μL Sample:1 = Cytochrome C, 2 = Lysozyme, 3 = BSA, 4 = Myoglobin, 5 = Ovalbumin, UHPLC instrument: HITACIHI Chromaster

Comparison of peak width (W0.5, min)

0011100110			,				
	C4-100	C4-30	C8-100	C8-30	C8-30HT	C8-30HT 0.5µL	Sample concentration
Cytochrome C	0.167	0.177	0.160	0.155	0.212	0.144	0.050%
Lysozyme	0.164	0.180	0.153	0.166	0.196	0.145	0.050%
BSA	0.308	0.410	0.276	0.514	0.422	0.330	0.100%
Myoglobin	0.197	0.221	0.180	0.199	0.238	0.176	0.050%
Ovalbmin	0.391	0.889	0.247	0.428	0.184	0.176	0.050%

The above table indicated that C4-100 with 1000Å of pore showed a sharper peak than the other. C8-30HT has a thin porous layer and low surface area, so that low sample loadnig made a peak sharper.

Regarding reversed phase separation of monoclonal antibody (IgG), not only core shell C4 with 30 nm pore showed the better separation than totally porous C4, but also 100 nm of pore leaded the best separation. Nano column showed almost the same separation of IgG as semi-micro column.

SunShell 2-EP, 2.6 μm

For Supercritical fluid Chromatography

2.6 μ m core shell column shows only one third of back pressure to compare with 1.7 μ m fully porous column although both show almost same efficiency. By such low back pressure, a difference of density of supercritical fluid between an inlet and an outlet of the column is reduced. Consequently, . 2.6 μ m core shell column performs a superior separation for SFC.

Characteristics of SunShell 2-EP

I			Core shell sili	ca					
		Particle Pore Specific size diameter surface a		Specific surface area	Carbon content	Bonded phase	End- capping	Maximum operating pressure	Available pH range
	SunShell 2-EP	2.6 μm 9 nm		150 m²/g	2.5%	2-Ethylpyridine	no	60 MPa or 8,570 psi	2 - 7.5

Comparison between SunShell 2-EP and 1.7 µm fully porous 2-EP

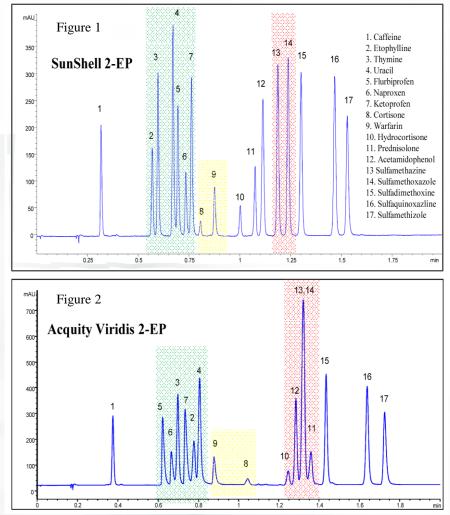
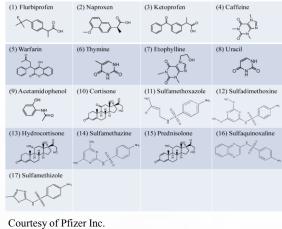
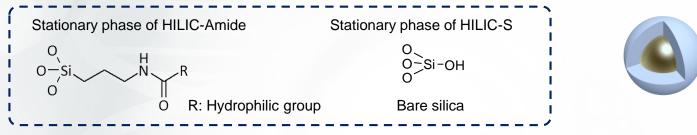



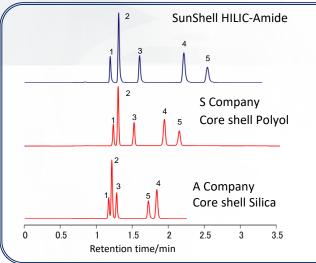
Figure 1: Chromatogram of the separation for he 17component mix using the Sun Shell 2-EP 150 x 3.0 mm column. A methanol gradient of < 2 minutes was used on the Agilent 1260 Infinity SFC system. SFC conditions: flow rate: 4.0mL/min; outlet pressure 160 bar; column temperature 55°C. Gradient program: 5.0-7.5% in 0.20 min, then 7.5-20% in 1.3 min and held at 20% for 0.2 min.

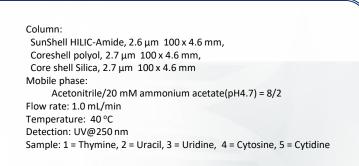
Figure 2: Chromatogram of the separation for the 17component mix using Acquity UPC² Viridis 2-EP 100 x 3.0 mm column. 16 of the 17 components were resolved. A methanol gradient of < 2 minutes was used on the Agilent 1260 Infinity SFC system. SFC conditions: flow rate 3.5 mL/min; outlet pressure 160 bar; and column temperature 70°C. Gradient program: 5.0-12.5% in 1.0 min, 12.5% for 0.25 min, then 12.5-20% in 0.75 min.

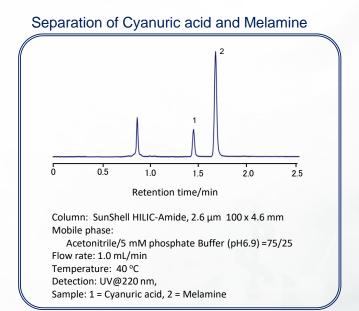

SunShell HILIC-Amide, HILIC-S, 2.6 µm

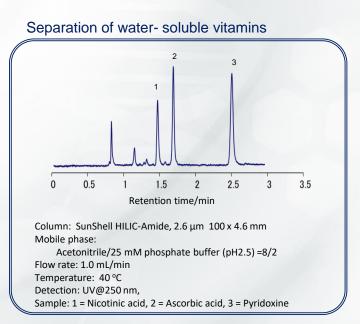
For Hydrophilic Interaction Chromatography

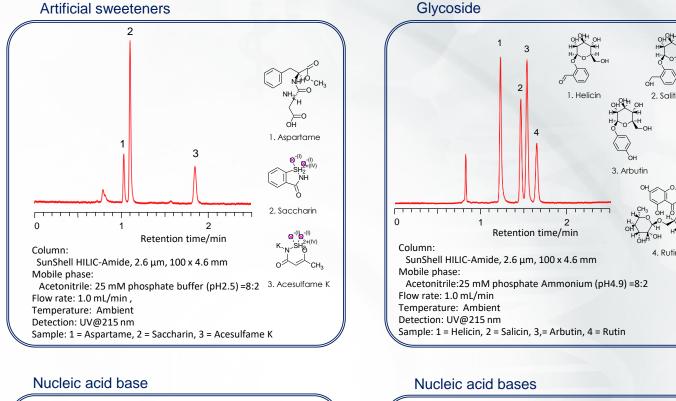
hromaNik Technolog

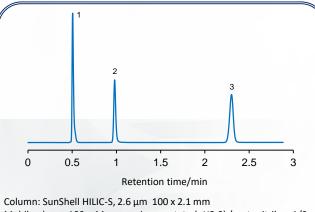

Characteristics of SunShell HILIC-Amide

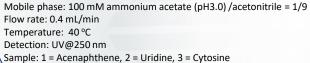

		(Core shell s	ilica		Amide (USP L68)					
	Particle size		Pore diameter	Specific surface area	Carbon content	Bonded phase	End- capping	Maximum operating pressure	USP category	Available pH range	
SunShell HILIC-Amide	2.6 µm	1.6 µm	9 nm	150 m²/g	3%	Amide	no	60 MPa or 8,570 psi	L63	2 - 8	
SunShell HILIC-S	2.6 µm	1.6 µm	9 nm	150 m²/g	0%	Bare silica	no	60 MPa or 8,570 psi	L3	1 - 5	

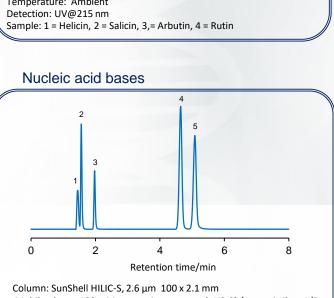

Stationary phase of SunShell HILIC-Amide consists of AMIDE and HYDROPHILIC GROUP, so that this stationary phase is more polar than an individual group. High speed separation is leaded by core shell structure that derives high efficiency and fast equilibration. HILIC-S is recommended for separation using LC/MS.


Separation of Nucleic acid bases: Comparison of the other core shell hilic columns




Regarding retention of cytidine, SunShell HILIC-Amide showed 30% higher retention factor than S core shell polyol.

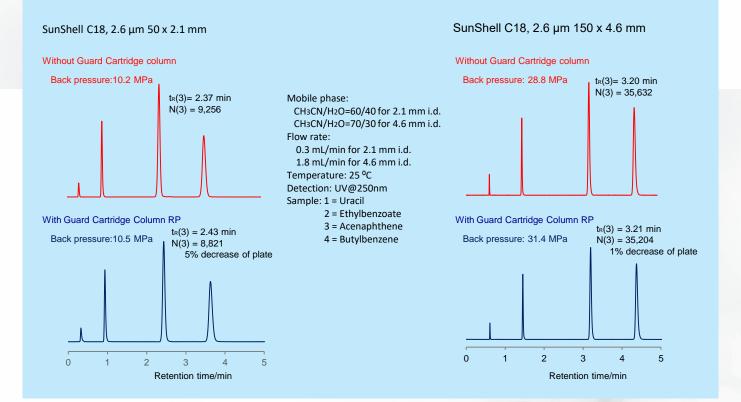




Mobile phase: 100 mM ammonium acetate (pH3.0) /acetonitrile = 1/9 Flow rate: 0.2 mL/min Temperature: 40 °C Detection: UV@250 nm Sample: 1 = Thymine, 2 = Uracil, 3 = Uridine, 4 = Cytosine, 5 = Cytidine

Core shell column with 1.0 mm i.d.

SunShell Guard Cartridge Column


ChromaNik Technologies Inc

Charm

RP & S GUARD CARTRIDGE COLUMN

- The cartridge column is packed with SunShell C18 (RP) and Core shell silica (S) into a cartridge sized 3 x 2 mm i.d.
- * RP guard cartridge is used for all reversed phases and S guard cartridge for hilic phases.
- * Low dead volume structure
- * Upper pressure limit is more than 60 Mpa
- * Availablr for 2.1 mm i.d. to 4.6 mm i.d. columns

Ordering Information of SunShell Guard Cartridge Column

Description	Part number
SunShell Guard Cartridge RP Starter Kit (holder, cartridge, tubing)	CB32CK
SunShell Guard Cartridge RP for exchange (2 PCS)	CB32CC
SunShell Guard Cartridge S Starter Kit (holder, cartridge, tubing)	CS32CK
SunShell Guard Cartridge S for exchange (2 PCS)	CS32CC
SunShell Guard Cartridge holder	HOL2CC



Ordering information of SunShell

	Inner diameter (mm)	1.0	2.1	3.0	4.6	USP category
	Length (mm)	Catalog number	Catalog number	Catalog number	Catalog number	
	50		CB1941			L1
SunShell C18, 2 μm SunShell C18, 2.6 μm	100		CB1961			
	150		CB1971			
	30		CB6931	CB6331	CB6431	
	50	CB6141	CB6941	CB6341	CB6441	
	75		CB6951	CB6351	CB6451	
	100	CB6161	CB6961	CB6361	CB6461	
	150	CB6171	CB6971	CB6371	CB6471	
	250			CB6381	CB6481	
SunShell C18, 5 µm	150			CB3371	CB3471	
	250			CB3381	CB3481	
	30		CC6931	CC6331	CC6431	-
	50		CC6941	CC6341	CC6441	
SunShell C8, 2.6 µm	75		CC6951	CC6351	CC6451	L7
	100		CC6961	CC6361	CC6461	-
	150		CC6971	CC6371	CC6471	
	30		CF6931	CF6331	CF6431	-
Surchall DED. 3.6 um	50		CF6941	CF6341	CF6441	
SunShell PFP, 2.6 µm	75		CF6951	CF6351	CF6451	L43
	100		CF6961	CF6361	CF6461	
	150		CF6971	CF6371	CF6471	
	30		CW6931	CW6331	CW6431	L1
SunShell C18-WP,	50		CW6941	CW6341	CW6441	
2.6 µm	75		CW6951	CW6351	CW6451	
	100		CW6961	CW6361	CW6461	
	150		CW6971	CW6371	CW6471	
	30	CR6141	CR6931	CR6331	CR6431 CR6441	Equivalent to L62
SunShell RP-AQUA,	50	CR6141	CR6941	CR6341		
2.6 µm	75 100	CR6161	CR6951 CR6961	CR6351 CR6361	CR6451 CR6461	
	150	CR6171	CR6971	CR6371	CR6471	
	30		CP6931	CP6331	CP6431	
	50		CP6941	CP6341	CP6441	-
SunShell Phenyl,	75		CP6951	CP6351	CP6451	L11
2.6 µm	100		CP6961	CP6361	CP6461	
	150		CP6971	CP6371	CP6471	-
-	30		CT6931	CT6331		
	50		CT6941	CT6341		L62
SunShell C30, 2.6 µm	75		CT6951	CT6351		
	100		CT6961	CT6361		
	150		CT6971	CT6371		-
	30		CE6931	CE6331	CE6431	
SunShell 2-EP, 2.6 µm	50		CE6941	CE6341	CE6441	
	75		CE6951	CE6351	CE6451	
	100		CE6961	CE6361	CE6461	1
	150		CE6971	CE6371	CE6471	
SunShell HILIC-Amide, 2.6 µm	30		CH6931	CH6331	CH6431	L68
	50		CH6941	CH6341	CH6441	
	75		CH6951	CH6351	CH6451	
	100		CH6961	CH6361	CH6461	1
	150		CH6971	CH6371	CH6471	1
	50		CU6941			L3
SunShell HILIC-S,	100		CU6961			
2.6 µm	150		CU6971			

	Inner diameter (mm)	1.0	2.1	3.0	4.6	USP category
	Length (mm)	Catalog number	Catalog number	Catalog number	Catalog number	
SunShell HFC18-16, 2.6 µm	50		CG6941	CG6341	CG6441	L1
	100		CG6961	CG6361	CG6461	
	150		CG6971	CG6371	CG6471	
SunShell HFC18-30, 2.6 µm	50		C46941	C46341	C46441	L1
	100		C46961	C46361	C46461	
	150		C46971	C46371	C46471	
SunShell C8-30, 2.6 μm	50		C36941	C36341	C36441	L7
	100		C36961	C36361	C36461	
	150		C36971	C36371	C36471	
SunShell C8-30HT, 3.4 μm	50		C56941			L7
	100		C56961			
	150		C56971			
SunShell C4-30, 2.6 μm	50		C26941	C26341	C26441	L26
	100		C26961	C26361	C26461	
	150		C26971	C26371	C26471	
SunShell C4-100, 2.6 μm	50		C66941			L26
	100		C66961			
	150		C66971			

*Distributor

Manufacturer

ChromaNik Technologies Inc.

6-3-1 Namiyoke, Minato-ku, Osaka, 552-0001 Japan TEL: +81-6-6581-0885 FAX: +81-6-6581-0890 E-mail: info@chromanik.co.jp URL: http://chromanik.co.jp

1905

ChromaNik Technolog