

Sunrise C28

Sunrise C18

RP C18 column with feature of a silanol group

Sunrise C18-SAC

Silanol Activity Controlled C18 Column

Sunrise Octacosyl (C28) Sunrise Octadecyl (C18)

Sunrise Octadecyl-SAC (C18-SAC) has an interaction of silanol groups

Sunrise C28 Sunrise C18

Name	Stationary phase	Carbon content	Ligand density	Particle size
C18 Octadecyl		15%	2.1 μmol/m ²	3 μm, 5 μm
C28 Octacocyl	ļ	~~~ 18%	1.7 μmol/m²	3 μm, 5 μm

Silica support

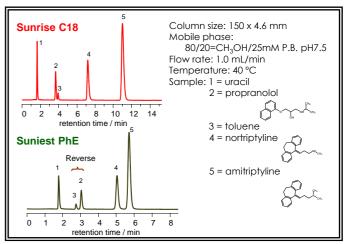
Surface area: 340 m²/g Pore volume: 1.0 mL/g Pore diameter: 12 nm

End-capping

Trimethylsilyl group (TMS)

pH range of C18 and dC28: pH2~pH8

◆ End-capping type Sunrise seriesの特徴

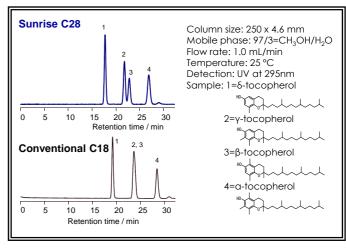

C28

- A long alkyl chain improves both separation of fat-soluble compounds to compare with C18 phase and an excellent reproducibility in retention under high aqueous conditions.
- Furthermore, a suitable ligand density of C28 allows to be obtained a shape peak shape even if more than 50% aqueous mobile phase is used.
- Different selectivity

C18:

■ Conventional C18 phase with full end-capping

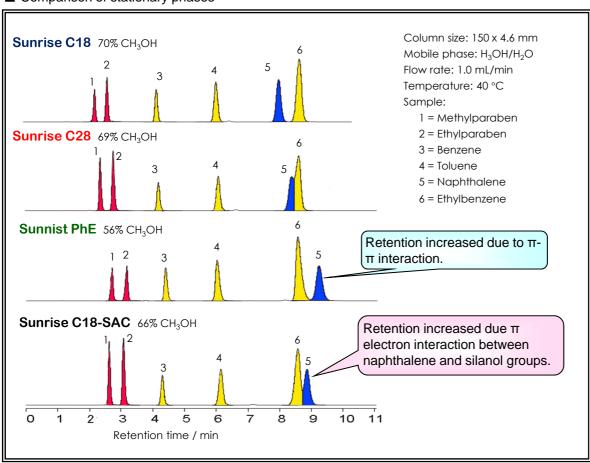
■ Separation of Basic compounds

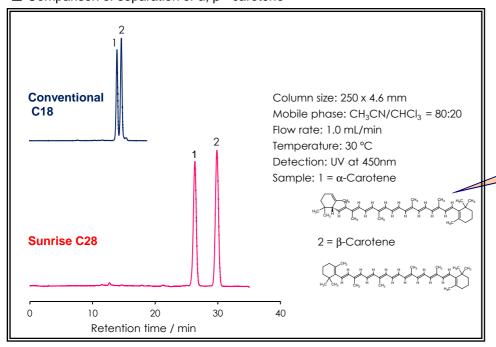

DhF

(Sunrise PhE has stopped production. Sunniest PhE is recommended as a replacement)

- Interaction based with p-electron such as p-p interaction
- p-electron also interacts with a polar site of a compound, so that phenyl phase improves separation of polar compounds. Ethylene chain between silica surface and phenyl group allows a movable sphere of a phenyl group to be wide. A chain with more than three carbons shows more hydrophobic interaction, so that p-electron interaction decreases relatively.
- Phenethyl (PhE) group is a suitable phenyl phase.

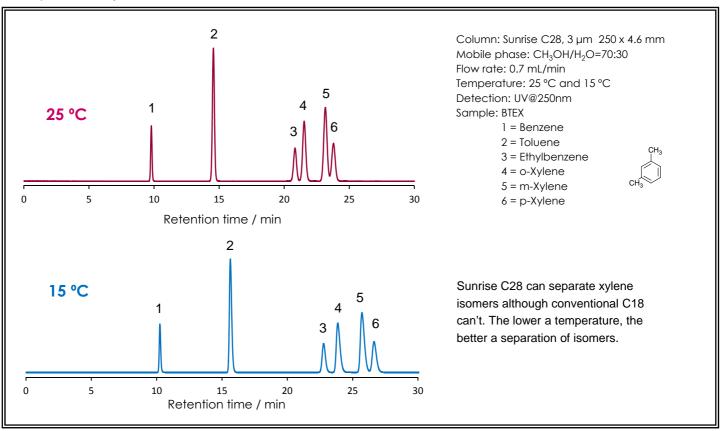
......

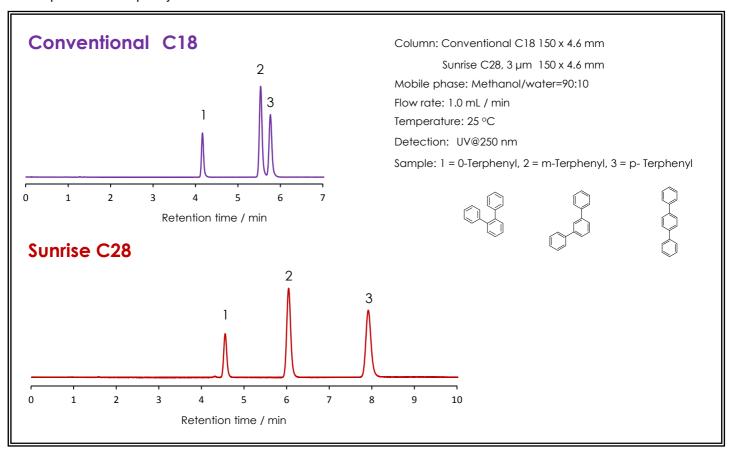

■ Separation of Vitamin E Isomer can be separated by C28


Sunrise C28 Sunrise C18

■ Comparison of stationary phases

■ Comparison of separation of α , β - carotene


The mobile phase including chroloform makes alkyl chains brash up because chroloform can enter among alkyl chains. Consequently retention times of C28 became 2 times longer than C18.

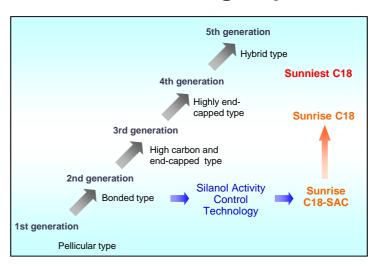

Sunrise C28

■ Separation of xylene isomers

■ Separation of ter-phenyl isomers

Sunrise C18-SAC

Silanol Activity Controlled C18 HPLC Column


New generation reversed-phase utilized silanol groups

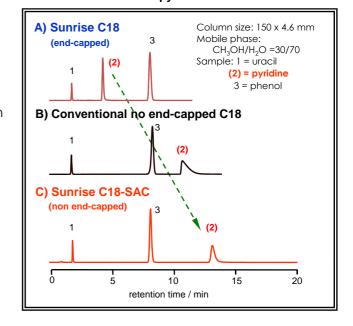

■ Silanol group and peak tailing

It is generally said that residual silanol groups on a stationary phase such as C18 (ODS) causes absorption or peak tailing for a sample. Especially silanol groups near a hydrophobic site don't solvate with water completely, so that they show high absorption for basic compounds. Its peak shows terribly tailing. Several end-capping techniques have been developed to solve these problems for many years.

■ Silanol activity control technology

ChromaNik developed the technique that decreased only silanol groups with high absorption activity to a basic compound and remained effective sailnol groups on the stationary phase. Silanol activity control and no end-capping led the existence of silanol groups with high hydration which created a new and unique reversed-phase separation mode including hydrogen bond and ion-exchange interaction. Furthermore, silanol activity controlling, then end-capping technique improved a peak shape of a basic compound exceedingly.

Feature of Sunrise series


Sunrise C18

- •The "1st Choice" column as a fully end-capped C18
- •Full end-capping after silanol activity control
- •Reducing adsorption of a basic compound extremely
- A good peak shape for a metal cheleting compound
- Widely available for general reversed-phase separation

Sunrise C18-SAC

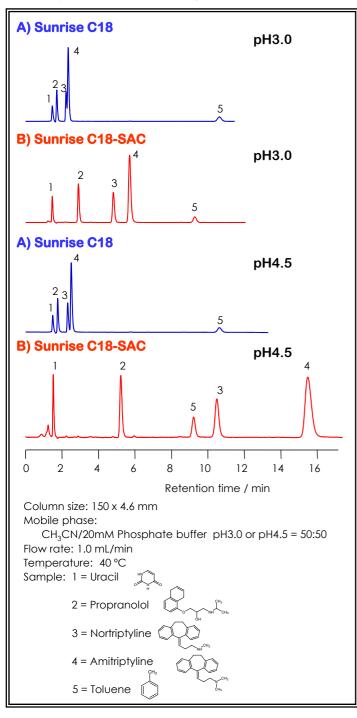
- •The "2nd Choice" column which takes advantage of effective silanol groups interaction
- •Reducing silanol groups with high adsorption activity
- •The new separation mechanism including hydrogen bond and ion-exchange interaction
- Effective for separation of a basic compound and a polar compound
- Different selectivity and improvement of separation without changing a mobile phase

■ The elution order of pyridine

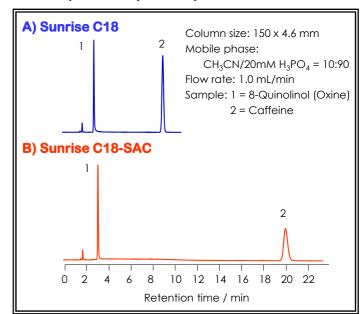
Sunrise C18-SAC

Silanol Activity Controlled C18 HPLC Column

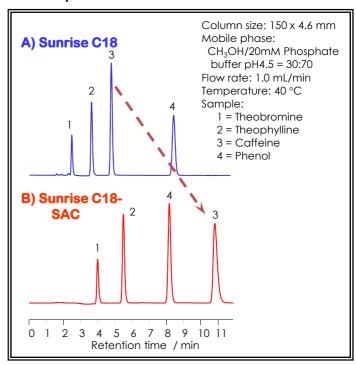
Sunrise series create an unique separation


* Effectiveness of silanol activity control: Comparison between Sunrise C18 and C18-SAC

Sunrise C18 is the so-called fully end-capped C18 column. It shows the same separation behavior as a conventional C18 column.


On the other hand, Sunrise C18-SAC shows hydrogen bond and ion-exchange interactions based on a residual silanol on the silica support in addition to reversed-phase separation. For example Sunrise C18 column separates a basic compound similarly as a conventional C18, while

Sunrise C18-SAC makes retention of a basic compound be large because an ion-exchange interaction works although a non-ionic compound shows the almost same retention on both Sunrise C18 and C18-SAC. Furthermore, Sunrise C18-SAC shows large retention for a polar compound such as caffeine.

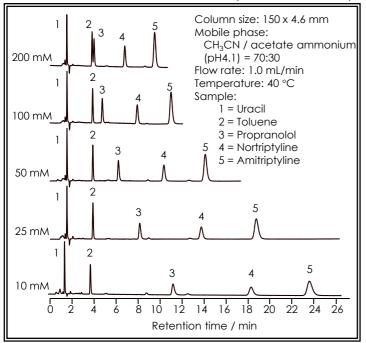

■ Comparison of selectivity for basic compounds

■ Comparison of peak shape and retention

■ Comparison of caffeine

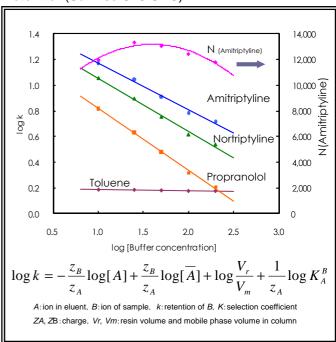
Sunrise C18-SAC

Silanol Activity Controlled C18 HPLC Column

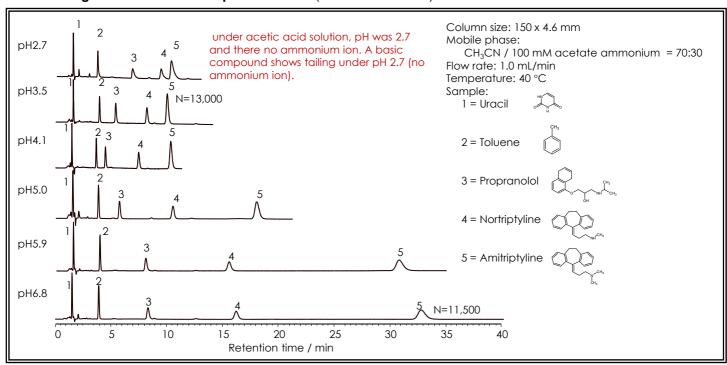


Multiple mode separation is achieved on Sunrise series

* Silanol groups controlled its activity functions as ion-exchange groups


Sunrise C18-SAC is bonded with octadecylsilane on a pure silica gel and controlled its silanol activity without end-capping. Its carbon content is 14%.

■ Separation of basic compounds with ammonium acetate: Effect of salt concentration(Sunrise C18-SAC)

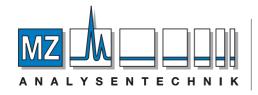


Separation on Sunrise C18-SAC is done including hydrogen bond and ion-exchange interaction based on silanol groups except for hydrophobic interaction. Control of pH and salt concentration of a mobile phase can regulate retention.

■ Relationship between buffer concentration and retention(Sunrise C18-SAC)

■ Chromtograms under different pH conditions (Sunrise C18-SAC)

Sunrise C28, C18, C18-SAC



* Sunrise series Analytical and Preparative Columns

Inner diameter	length	Sunrise C28, 3µm	Sunrise C28, 5µm
[mm]	[mm]	Cat. No.	Cat. No.
2.0	50	ST2241	ST3241
	75	ST2251	_
	100	ST2261	ST3261
	150	ST2271	ST3271
	250	ST2281	ST3281
4.6	10	ST2411	ST3411
	50	ST2441	ST3441
	75	ST2451	_
	100	ST2461	ST3461
	150	ST2471	ST3471
	250	_	ST3481
10.0	250	_	ST3781
20.0	250	_	ST3881

Inner diameter	length	Sunrise C18, 3µm	Sunrise C18, 5µm	Sunrise C18-SAC, 3µm	Sunrise C18-SAC, 5µm
[mm]	[mm]	Cat. No.	Cat. No.	Cat. No.	Cat. No.
2.0	50	SB2241	SB3241	SA2241	SA3241
	75	SB2251	_	SA2251	_
	100	SB2261	SB3261	SA2261	SA3261
	150	SB2271	SB3271	SA2271	SA3271
4.6	10	SB2411	SB3411	SA2411	SA3411
	50	SB2441	SB3441	SA2441	SA3441
	75	SB2451	_	SA2451	_
	100	SB2461	SB3461	SA2461	SA3461
	150	SB2471	SB3471	SA2471	SA3471
	250	_	SB3481	_	SA3481
10.0	250	_	SB3781	_	SA3781
20.0	250	_	SB3881	_	SA3881

AUTHORIZED DISTRIBUTOR

MZ-Analysentechnik GmbH, Barcelona-Allee 17 • D-55129 Mainz Tel +49 6131 880 96-0, Fax +49 6131 880 96-20 e-mail: info@mz-at.de, www.mz-at.de

1608